follow bone method

master
pullusb 2023-12-05 11:27:48 +01:00
parent 7d05e7390d
commit 373a36a825
5 changed files with 107 additions and 22 deletions

View File

@ -1,7 +1,7 @@
bl_info = {
"name": "gp interpolate",
"author": "Christophe Seux, Samuel Bernou",
"version": (0, 1, 0),
"version": (0, 1, 1),
"blender": (3, 6, 0),
"location": "Sidebar > Gpencil Tab > Interpolate",
"description": "Interpolate Grease pencil strokes over 3D",

View File

@ -1,10 +1,12 @@
import bpy
import numpy as np
from math import tan
from math import tan, acos, degrees
from time import perf_counter
from mathutils import Vector, Matrix
from gp_interpolate import utils
from mathutils.geometry import (barycentric_transform, intersect_point_tri,
intersect_point_line, intersect_line_plane, tessellate_polygon)
@ -101,7 +103,7 @@ def ray_cast_point(point, origin, depsgraph):
return object_hit, np.array(hit_location), tri, tri_indices
def plane_on_bone(bone, arm=None, cam=None):
def plane_on_bone(bone, arm=None, cam=None, set_rotation=True):
if cam is None:
cam = bpy.context.scene.camera
@ -110,22 +112,47 @@ def plane_on_bone(bone, arm=None, cam=None):
plane = plane_coords()
mat = cam.matrix_world.copy()
## center
mat.translation = arm @ ((bone.tail + bone.head) / 2)
## plane is 1 unit side
if set_rotation:
head_world_coord = arm.matrix_world @ bone.head
mat.translation = head_world_coord
## Apply 2d bone rotation facing camera
# Get 2d camera space coords (NDC: normalized device coordinate, 0,0 is bottom-left)
head_2d, tail_2d = utils.get_bone_head_tail_2d(bone, cam=cam)
vec_from_corner_2d = (tail_2d - head_2d).normalized()
up_vec_2d = Vector((0,1))
# angle = acos(up_vec_2d.dot(vec_from_corner_2d)) ## equivalent but not signed!
angle = up_vec_2d.angle_signed(vec_from_corner_2d)
## Axis camera aim (seem slightly off)
# rot_axis = Vector((0, 0, -1))
# rot_axis.rotate(cam.matrix_world)
## Axis camera origin -> pivot
rot_axis = head_world_coord - cam.matrix_world.translation
mat = utils.rotate_matrix_around_pivot(mat, angle, head_world_coord, rot_axis)
else:
## Use mid bone to better follow movement
mat.translation = arm.matrix_world @ ((bone.tail + bone.head) / 2) # Mid bone
mat_scale = Matrix.Scale(10, 4)
return matrix_transform(plane, mat @ mat_scale)
def cast_on_plane(point, origin, face_co):
def intersect_with_tesselated_plane(point, origin, face_co):
'''
face_co: World face coordinate
face_co: World face coordinates
'''
tri = None
for tri_idx in tessellate_polygon([face_co]):
tri = [face_co[i] for i in tri_idx]
tri_indices = [i for i in tri_idx]
hit_location = intersect_line_plane(origin, point, tri, triangle_normal(*tri))
hit_location = intersect_line_plane(origin, point, sum((Vector(v) for v in tri), Vector()) / 3, triangle_normal(*tri))
if intersect_point_tri(hit_location, *tri):
break
@ -230,15 +257,14 @@ class GP_OT_interpolate_stroke(bpy.types.Operator):
strokes_data = []
if settings.method == 'BONE':
self.report({'ERROR'}, 'Mega WIP')
return {'CANCELLED'}
## Follow Bone method (Full WIP)
if not settings.target_rig or not settings.target_bone:
self.report({'ERROR'}, 'No Bone selected')
return {'CANCELLED'}
bone_plane = plane_on_bone(settings.target_rig.pose.bones.get(settings.target_bone), arm=settings.target_rig)
bone_plane = plane_on_bone(settings.target_rig.pose.bones.get(settings.target_bone),
arm=settings.target_rig,
set_rotation=settings.use_bone_rotation)
strokes_data = []
for stroke in tgt_strokes:
@ -252,11 +278,10 @@ class GP_OT_interpolate_stroke(bpy.types.Operator):
for i, point in enumerate(stroke.points):
point_co_world = world_co_3d[i]
hit_location = cast_on_plane(point_co_world, origin, bone_plane)
hit_location, tri, tri_indices = intersect_with_tesselated_plane(point_co_world, origin, bone_plane)
## probably easier to just generate a single vast triangle and use it
# hit_location = intersect_line_plane(origin, point_co_world, tri[0], triangle_normal(*tri))
## Store same as other method, without object hit
## Store same as other method (without object hit)
stroke_data.append((stroke, point_co_world, hit_location, tri, tri_indices))
strokes_data.append(stroke_data)
@ -275,19 +300,21 @@ class GP_OT_interpolate_stroke(bpy.types.Operator):
matrix_inv = np.array(gp.matrix_world.inverted(), dtype='float64')#.inverted()
new_strokes = gp.data.layers.active.active_frame.strokes[-len(strokes_data):]
bone_plane = plane_on_bone(settings.target_rig.pose.bones.get(settings.target_bone), arm=settings.target_rig)
bone_plane = plane_on_bone(settings.target_rig.pose.bones.get(settings.target_bone),
arm=settings.target_rig,
set_rotation=settings.use_bone_rotation)
for new_stroke, stroke_data in zip(new_strokes, strokes_data):
world_co_3d = [] # np.array(len()dtype='float64')#np.
for stroke, point_co, hit_location, tri_a, tri_indices in stroke_data:
## MEGA WIP
## TODO: use new bone_plane to set new coordinate
tri_b = [bone_plane[i] for i in tri_indices]
tri_b = matrix_transform(tri_b, eval_ob.matrix_world)
# tri_b = matrix_transform(tri_b, settings.target_rig.matrix_world)
## rotate tri_b by bone differential angle camera's aim axis ?
new_loc = barycentric_transform(hit_location, *tri_a, *tri_b)
world_co_3d.append(new_loc)
# Reproject on plane
new_world_co_3d = [intersect_line_plane(origin, p, plan_co, plane_no) for p in world_co_3d]
new_local_co_3d = matrix_transform(new_world_co_3d, matrix_inv)

View File

@ -67,6 +67,11 @@ class GP_PG_interpolate_settings(PropertyGroup):
name='Bone',
description='Bone of the rig to follow when interpolating') # Bone
use_bone_rotation : BoolProperty(
name='Use Bone Rotation',
default=True,
description='Apply rotation of the bone') # Bone
classes = (
GP_PG_interpolate_settings,
)

1
ui.py
View File

@ -37,6 +37,7 @@ class GP_PT_interpolate(bpy.types.Panel):
if settings.target_rig:
# col.prop_search(ob.rig_picker, 'name', settings.target_rig.pose, 'bones', text='Bone')
col.prop_search(settings, 'target_bone', settings.target_rig.pose, 'bones', text='Bone')
col.prop(settings, 'use_bone_rotation', text='Use Bone Rotation')
elif settings.method == 'GEOMETRY':

52
utils.py Normal file
View File

@ -0,0 +1,52 @@
import bpy
import math
from mathutils import Vector, Matrix
from bpy_extras.object_utils import world_to_camera_view
def get_bone_head_tail_2d(posebone, scene=None, cam=None) -> tuple[Vector, Vector]:
'''Get 2D vectors in camera view of bone head and tails
return tuple of 2d vectors (head_2d and tail_2d)
'''
scene = scene or bpy.context.scene
cam = cam or scene.camera
arm = posebone.id_data
# Get 3D locations of head and tail
head_3d = arm.matrix_world @ posebone.head
tail_3d = arm.matrix_world @ posebone.tail
# Convert 3D locations to 2D
head_2d = world_to_camera_view(scene, cam, head_3d)
tail_2d = world_to_camera_view(scene, cam, tail_3d)
ratio = scene.render.resolution_y / scene.render.resolution_x
head_2d.y *= ratio
tail_2d.y *= ratio
return Vector((head_2d.x, head_2d.y)), Vector((tail_2d.x, tail_2d.y))
def rotate_matrix_around_pivot(matrix, angle, pivot, axis):
'''Rotate a given matrix by a CW angle around pivot on a given axis
matrix (Matrix): the matrix to rotate
angle (Float, Radians): the angle in radians
pivot (Vector3): the pivot 3D coordinate
axis (Vector3): the vector axis of rotation
'''
# Convert angle to radians ?
# angle = math.radians(angle)
# Create a rotation matrix
rot_matrix = Matrix.Rotation(angle, 4, axis)
# Create translation matrices
translate_to_origin = Matrix.Translation(-pivot)
translate_back = Matrix.Translation(pivot)
# Combine the transformations : The order of multiplication is important
new_matrix = translate_back @ rot_matrix @ translate_to_origin @ matrix
return new_matrix