refactor - separate utils functions

master
pullusb 2023-12-05 11:39:37 +01:00
parent 373a36a825
commit 4c44ff96b3
2 changed files with 171 additions and 153 deletions

View File

@ -1,163 +1,23 @@
import bpy
import numpy as np
from math import tan, acos, degrees
from time import perf_counter
from mathutils import Vector, Matrix
from gp_interpolate import utils
from gp_interpolate.utils import (matrix_transform,
plane_on_bone,
ray_cast_point,
intersect_with_tesselated_plane,
triangle_normal,
search_square,
get_gp_draw_plane)
from mathutils.geometry import (barycentric_transform, intersect_point_tri,
intersect_point_line, intersect_line_plane, tessellate_polygon)
from mathutils.geometry import (barycentric_transform,
intersect_point_tri,
intersect_point_line,
intersect_line_plane,
tessellate_polygon)
def get_gp_draw_plane(obj=None):
''' return tuple with plane coordinate and normal
of the curent drawing according to geometry'''
if obj is None:
obj = bpy.context.object
settings = bpy.context.scene.tool_settings
orient = settings.gpencil_sculpt.lock_axis #'VIEW', 'AXIS_Y', 'AXIS_X', 'AXIS_Z', 'CURSOR'
loc = settings.gpencil_stroke_placement_view3d #'ORIGIN', 'CURSOR', 'SURFACE', 'STROKE'
mat = obj.matrix_world
plane_no = Vector((0.0, 0.0, 1.0))
plane_co = mat.to_translation()
# -> orientation
if orient == 'VIEW':
mat = bpy.context.scene.camera.matrix_world
# -> placement
if loc == "CURSOR":
plane_co = bpy.context.scene.cursor.location
mat = bpy.context.scene.cursor.matrix
elif orient == 'AXIS_Y':#front (X-Z)
plane_no = Vector((0,1,0))
elif orient == 'AXIS_X':#side (Y-Z)
plane_no = Vector((1,0,0))
elif orient == 'AXIS_Z':#top (X-Y)
plane_no = Vector((0,0,1))
plane_no.rotate(mat)
return plane_co, plane_no
def triangle_normal(a, b, c):
x = a[1] * b[2] - a[2] * b[1]
y = a[2] * b[0] - a[0] * b[2]
z = a[0] * b[1] - a[1] * b[0]
return np.array([x, y, z], dtype='float64')
def plane_coords(size=1):
v = size * 0.5
return np.array([(-v, v, 0), (v, v, 0), (v, -v, 0), (-v, -v, 0)], dtype='float64')
def matrix_transform(coords, matrix):
coords_4d = np.column_stack((coords, np.ones(len(coords), dtype='float64')))
return np.einsum('ij,aj->ai', matrix, coords_4d)[:, :-1]
def vector_normalized(vec):
return vec / np.sqrt(np.sum(vec**2))
def vector_magnitude(vec):
return np.sqrt(vec.dot(vec))
def search_square(point, factor=0.05, cam=None):
if cam is None:
cam = bpy.context.scene.camera
plane = plane_coords()
mat = cam.matrix_world.copy()
mat.translation = point
depth = vector_magnitude(point - cam.matrix_world.to_translation())
mat_scale = Matrix.Scale(tan(cam.data.angle*0.5)*depth*factor, 4)
return matrix_transform(plane, mat @ mat_scale)
def ray_cast_point(point, origin, depsgraph):
ray = (point - origin)#.normalized()
hit, hit_location, normal, face_index, object_hit, matrix = bpy.context.scene.ray_cast(depsgraph, origin, ray)
if not hit:
return None, None, None, None
eval_ob = object_hit.evaluated_get(depsgraph)
face = eval_ob.data.polygons[face_index]
vertices = [eval_ob.data.vertices[i] for i in face.vertices]
face_co = matrix_transform([v.co for v in vertices], eval_ob.matrix_world)
tri = None
for tri_idx in tessellate_polygon([face_co]):
tri = [face_co[i] for i in tri_idx]
tri_indices = [vertices[i].index for i in tri_idx]
if intersect_point_tri(hit_location, *tri):
break
return object_hit, np.array(hit_location), tri, tri_indices
def plane_on_bone(bone, arm=None, cam=None, set_rotation=True):
if cam is None:
cam = bpy.context.scene.camera
if arm is None:
arm = bone.id_data
plane = plane_coords()
mat = cam.matrix_world.copy()
if set_rotation:
head_world_coord = arm.matrix_world @ bone.head
mat.translation = head_world_coord
## Apply 2d bone rotation facing camera
# Get 2d camera space coords (NDC: normalized device coordinate, 0,0 is bottom-left)
head_2d, tail_2d = utils.get_bone_head_tail_2d(bone, cam=cam)
vec_from_corner_2d = (tail_2d - head_2d).normalized()
up_vec_2d = Vector((0,1))
# angle = acos(up_vec_2d.dot(vec_from_corner_2d)) ## equivalent but not signed!
angle = up_vec_2d.angle_signed(vec_from_corner_2d)
## Axis camera aim (seem slightly off)
# rot_axis = Vector((0, 0, -1))
# rot_axis.rotate(cam.matrix_world)
## Axis camera origin -> pivot
rot_axis = head_world_coord - cam.matrix_world.translation
mat = utils.rotate_matrix_around_pivot(mat, angle, head_world_coord, rot_axis)
else:
## Use mid bone to better follow movement
mat.translation = arm.matrix_world @ ((bone.tail + bone.head) / 2) # Mid bone
mat_scale = Matrix.Scale(10, 4)
return matrix_transform(plane, mat @ mat_scale)
def intersect_with_tesselated_plane(point, origin, face_co):
'''
face_co: World face coordinates
'''
tri = None
for tri_idx in tessellate_polygon([face_co]):
tri = [face_co[i] for i in tri_idx]
tri_indices = [i for i in tri_idx]
hit_location = intersect_line_plane(origin, point, sum((Vector(v) for v in tri), Vector()) / 3, triangle_normal(*tri))
if intersect_point_tri(hit_location, *tri):
break
return np.array(hit_location), tri, tri_indices
def following_key(forward=True):
direction = 1 if forward else -1
cur_frame = bpy.context.scene.frame_current

160
utils.py
View File

@ -1,8 +1,127 @@
import bpy
import math
import numpy as np
from math import tan
from mathutils import Vector, Matrix
from bpy_extras.object_utils import world_to_camera_view
from mathutils.geometry import (barycentric_transform, intersect_point_tri,
intersect_point_line, intersect_line_plane, tessellate_polygon)
# --- Vector
def triangle_normal(a, b, c):
x = a[1] * b[2] - a[2] * b[1]
y = a[2] * b[0] - a[0] * b[2]
z = a[0] * b[1] - a[1] * b[0]
return np.array([x, y, z], dtype='float64')
def plane_coords(size=1):
v = size * 0.5
return np.array([(-v, v, 0), (v, v, 0), (v, -v, 0), (-v, -v, 0)], dtype='float64')
def matrix_transform(coords, matrix):
coords_4d = np.column_stack((coords, np.ones(len(coords), dtype='float64')))
return np.einsum('ij,aj->ai', matrix, coords_4d)[:, :-1]
def vector_normalized(vec):
return vec / np.sqrt(np.sum(vec**2))
def vector_magnitude(vec):
return np.sqrt(vec.dot(vec))
def search_square(point, factor=0.05, cam=None):
if cam is None:
cam = bpy.context.scene.camera
plane = plane_coords()
mat = cam.matrix_world.copy()
mat.translation = point
depth = vector_magnitude(point - cam.matrix_world.to_translation())
mat_scale = Matrix.Scale(tan(cam.data.angle*0.5)*depth*factor, 4)
return matrix_transform(plane, mat @ mat_scale)
def ray_cast_point(point, origin, depsgraph):
ray = (point - origin)#.normalized()
hit, hit_location, normal, face_index, object_hit, matrix = bpy.context.scene.ray_cast(depsgraph, origin, ray)
if not hit:
return None, None, None, None
eval_ob = object_hit.evaluated_get(depsgraph)
face = eval_ob.data.polygons[face_index]
vertices = [eval_ob.data.vertices[i] for i in face.vertices]
face_co = matrix_transform([v.co for v in vertices], eval_ob.matrix_world)
tri = None
for tri_idx in tessellate_polygon([face_co]):
tri = [face_co[i] for i in tri_idx]
tri_indices = [vertices[i].index for i in tri_idx]
if intersect_point_tri(hit_location, *tri):
break
return object_hit, np.array(hit_location), tri, tri_indices
def plane_on_bone(bone, arm=None, cam=None, set_rotation=True):
if cam is None:
cam = bpy.context.scene.camera
if arm is None:
arm = bone.id_data
plane = plane_coords()
mat = cam.matrix_world.copy()
if set_rotation:
head_world_coord = arm.matrix_world @ bone.head
mat.translation = head_world_coord
## Apply 2d bone rotation facing camera
# Get 2d camera space coords (NDC: normalized device coordinate, 0,0 is bottom-left)
head_2d, tail_2d = utils.get_bone_head_tail_2d(bone, cam=cam)
vec_from_corner_2d = (tail_2d - head_2d).normalized()
up_vec_2d = Vector((0,1))
# angle = acos(up_vec_2d.dot(vec_from_corner_2d)) ## equivalent but not signed!
angle = up_vec_2d.angle_signed(vec_from_corner_2d)
## Axis camera aim (seem slightly off)
# rot_axis = Vector((0, 0, -1))
# rot_axis.rotate(cam.matrix_world)
## Axis camera origin -> pivot
rot_axis = head_world_coord - cam.matrix_world.translation
mat = utils.rotate_matrix_around_pivot(mat, angle, head_world_coord, rot_axis)
else:
## Use mid bone to better follow movement
mat.translation = arm.matrix_world @ ((bone.tail + bone.head) / 2) # Mid bone
mat_scale = Matrix.Scale(10, 4)
return matrix_transform(plane, mat @ mat_scale)
def intersect_with_tesselated_plane(point, origin, face_co):
'''
face_co: World face coordinates
'''
tri = None
for tri_idx in tessellate_polygon([face_co]):
tri = [face_co[i] for i in tri_idx]
tri_indices = [i for i in tri_idx]
hit_location = intersect_line_plane(origin, point, sum((Vector(v) for v in tri), Vector()) / 3, triangle_normal(*tri))
if intersect_point_tri(hit_location, *tri):
break
return np.array(hit_location), tri, tri_indices
def get_bone_head_tail_2d(posebone, scene=None, cam=None) -> tuple[Vector, Vector]:
'''Get 2D vectors in camera view of bone head and tails
@ -49,4 +168,43 @@ def rotate_matrix_around_pivot(matrix, angle, pivot, axis):
# Combine the transformations : The order of multiplication is important
new_matrix = translate_back @ rot_matrix @ translate_to_origin @ matrix
return new_matrix
return new_matrix
# --- GREASE PENCIL
def get_gp_draw_plane(obj=None):
''' return tuple with plane coordinate and normal
of the curent drawing according to geometry'''
if obj is None:
obj = bpy.context.object
settings = bpy.context.scene.tool_settings
orient = settings.gpencil_sculpt.lock_axis #'VIEW', 'AXIS_Y', 'AXIS_X', 'AXIS_Z', 'CURSOR'
loc = settings.gpencil_stroke_placement_view3d #'ORIGIN', 'CURSOR', 'SURFACE', 'STROKE'
mat = obj.matrix_world
plane_no = Vector((0.0, 0.0, 1.0))
plane_co = mat.to_translation()
# -> orientation
if orient == 'VIEW':
mat = bpy.context.scene.camera.matrix_world
# -> placement
if loc == "CURSOR":
plane_co = bpy.context.scene.cursor.location
mat = bpy.context.scene.cursor.matrix
elif orient == 'AXIS_Y':#front (X-Z)
plane_no = Vector((0,1,0))
elif orient == 'AXIS_X':#side (Y-Z)
plane_no = Vector((1,0,0))
elif orient == 'AXIS_Z':#top (X-Y)
plane_no = Vector((0,0,1))
plane_no.rotate(mat)
return plane_co, plane_no