code for growing search -backup old ops method

master
pullusb 2023-12-07 17:51:12 +01:00
parent 77e3049d5d
commit 52f92ea103
7 changed files with 379 additions and 270 deletions

View File

@ -1,7 +1,7 @@
bl_info = { bl_info = {
"name": "gp interpolate", "name": "gp interpolate",
"author": "Christophe Seux, Samuel Bernou", "author": "Christophe Seux, Samuel Bernou",
"version": (0, 2, 0), "version": (0, 2, 1),
"blender": (3, 6, 0), "blender": (3, 6, 0),
"location": "Sidebar > Gpencil Tab > Interpolate", "location": "Sidebar > Gpencil Tab > Interpolate",
"description": "Interpolate Grease pencil strokes over 3D", "description": "Interpolate Grease pencil strokes over 3D",

View File

@ -1,8 +1,11 @@
from gp_interpolate.interpolate_strokes import operators, properties from gp_interpolate.interpolate_strokes import (operators,
properties,
interpolate_simple)
modules = ( modules = (
properties, properties,
operators, operators,
interpolate_simple,
) )
if "bpy" in locals(): if "bpy" in locals():

View File

@ -0,0 +1,227 @@
import bpy
import numpy as np
from time import perf_counter, time
from mathutils import Vector, Matrix
from gp_interpolate.utils import (matrix_transform,
plane_on_bone,
ray_cast_point,
intersect_with_tesselated_plane,
triangle_normal,
search_square,
get_gp_draw_plane,
create_plane,
following_keys,
attr_set)
from mathutils.geometry import (barycentric_transform,
intersect_point_tri,
intersect_point_line,
intersect_line_plane,
tessellate_polygon)
## /!\ Old code kept for testing
## use pseudo plane coordinate instead of rayvast on real mesh plane
class GP_OT_interpolate_stroke_simple(bpy.types.Operator):
bl_idname = "gp.interpolate_stroke_simple"
bl_label = "Interpolate Stroke Simple"
bl_description = 'Interpolate Stroke Simple'
bl_options = {'REGISTER', 'UNDO'}
@classmethod
def poll(cls, context):
if context.active_object and context.object.type == 'GPENCIL'\
and context.mode in ('EDIT_GPENCIL', 'SCULPT_GPENCIL', 'PAINT_GPENCIL'):
return True
cls.poll_message_set("Need a Grease pencil object in Edit or Sculpt mode")
return False
@classmethod
def description(cls, context, properties):
if properties.next:
return f"Interpolate Stroke Forward"
else:
return f"Interpolate Stroke Backward"
next : bpy.props.BoolProperty(name='Next', default=True, options={'SKIP_SAVE'})
def execute(self, context):
settings = context.scene.gp_interpo_settings
auto_key_status = context.tool_settings.use_keyframe_insert_auto
context.tool_settings.use_keyframe_insert_auto = True
## Determine on what key to jump
frames_to_jump = following_keys(forward=self.next)
if not frames_to_jump:
self.report({'WARNING'}, 'No keyframe available in this direction')
return {'CANCELLED'}
frames_to_jump = frames_to_jump[0]
gp = context.object
scn = bpy.context.scene
dg = bpy.context.evaluated_depsgraph_get()
matrix = np.array(gp.matrix_world, dtype='float64')#.inverted()
col = settings.target_collection
if not col:
col = scn.collection
origin = np.array(scn.camera.matrix_world.to_translation(), 'float64')
# print('----')
tgt_strokes = [s for s in gp.data.layers.active.active_frame.strokes if s.select]
## If nothing selected in sculpt/paint, Select all before triggering
if not tgt_strokes and context.mode in ('SCULPT_GPENCIL', 'PAINT_GPENCIL'):
for s in gp.data.layers.active.active_frame.strokes:
s.select = True
tgt_strokes = gp.data.layers.active.active_frame.strokes
if not tgt_strokes:
self.report({'ERROR'}, 'No stroke selected !')
return {'CANCELLED'}
strokes_data = []
if settings.method == 'BONE':
## Follow Bone method (Full WIP)
if not settings.target_rig or not settings.target_bone:
self.report({'ERROR'}, 'No Bone selected')
return {'CANCELLED'}
bone_plane = plane_on_bone(settings.target_rig.pose.bones.get(settings.target_bone),
arm=settings.target_rig,
set_rotation=settings.use_bone_rotation)
strokes_data = []
for stroke in tgt_strokes:
nb_points = len(stroke.points)
local_co = np.empty(nb_points * 3, dtype='float64')
stroke.points.foreach_get('co', local_co)
# local_co_3d = local_co.reshape((nb_points, 3))
world_co_3d = matrix_transform(local_co.reshape((nb_points, 3)), matrix)
stroke_data = []
for i, point in enumerate(stroke.points):
point_co_world = world_co_3d[i]
hit_location, tri, tri_indices = intersect_with_tesselated_plane(point_co_world, origin, bone_plane)
## Probably easier to just generate a single vast triangle and use it
## Store same as other method (without object hit)
stroke_data.append((stroke, point_co_world, hit_location, tri, tri_indices))
strokes_data.append(stroke_data)
else:
## Geometry method
for stroke in tgt_strokes:
nb_points = len(stroke.points)
local_co = np.empty(nb_points * 3, dtype='float64')
stroke.points.foreach_get('co', local_co)
# local_co_3d = local_co.reshape((nb_points, 3))
world_co_3d = matrix_transform(local_co.reshape((nb_points, 3)), matrix)
stroke_data = []
for i, point in enumerate(stroke.points):
point_co_world = world_co_3d[i]
object_hit, hit_location, tri, tri_indices = ray_cast_point(point_co_world, origin, dg)
if not object_hit or object_hit not in col.all_objects[:]:
for square_co in search_square(point_co_world, factor=settings.search_range):
object_hit, hit_location, tri, tri_indices = ray_cast_point(square_co, origin, dg)
if object_hit and object_hit in col.all_objects[:]:
hit_location = intersect_line_plane(origin, point_co_world, tri[0], triangle_normal(*tri))
break
stroke_data.append((stroke, point_co_world, object_hit, hit_location, tri, tri_indices))
strokes_data.append(stroke_data)
# Copy stroke selection, jump frame and paste
bpy.ops.gpencil.copy()
scn.frame_set(frames_to_jump)
plan_co, plane_no = get_gp_draw_plane(gp)
bpy.ops.gpencil.paste()
if settings.method == 'BONE':
matrix_inv = np.array(gp.matrix_world.inverted(), dtype='float64')#.inverted()
new_strokes = gp.data.layers.active.active_frame.strokes[-len(strokes_data):]
bone_plane = plane_on_bone(settings.target_rig.pose.bones.get(settings.target_bone),
arm=settings.target_rig,
set_rotation=settings.use_bone_rotation)
for new_stroke, stroke_data in zip(new_strokes, strokes_data):
world_co_3d = [] # np.array(len()dtype='float64')#np.
for stroke, point_co, hit_location, tri_a, tri_indices in stroke_data:
tri_b = [bone_plane[i] for i in tri_indices]
# tri_b = matrix_transform(tri_b, settings.target_rig.matrix_world)
## rotate tri_b by bone differential angle camera's aim axis ?
new_loc = barycentric_transform(hit_location, *tri_a, *tri_b)
world_co_3d.append(new_loc)
# Reproject on plane
new_world_co_3d = [intersect_line_plane(origin, p, plan_co, plane_no) for p in world_co_3d]
new_local_co_3d = matrix_transform(new_world_co_3d, matrix_inv)
nb_points = len(new_stroke.points)
new_stroke.points.foreach_set('co', new_local_co_3d.reshape(nb_points*3))
new_stroke.points.update()
else:
dg = bpy.context.evaluated_depsgraph_get()
matrix_inv = np.array(gp.matrix_world.inverted(), dtype='float64')#.inverted()
new_strokes = gp.data.layers.active.active_frame.strokes[-len(strokes_data):]
for new_stroke, stroke_data in zip(new_strokes, strokes_data):
world_co_3d = [] # np.array(len()dtype='float64')#np.
for stroke, point_co, object_hit, hit_location, tri_a, tri_indices in stroke_data:
eval_ob = object_hit.evaluated_get(dg)
tri_b = [eval_ob.data.vertices[i].co for i in tri_indices]
tri_b = matrix_transform(tri_b, eval_ob.matrix_world)
new_loc = barycentric_transform(hit_location, *tri_a, *tri_b)
world_co_3d.append(new_loc)
# Reproject on plane
new_world_co_3d = [intersect_line_plane(origin, p, plan_co, plane_no) for p in world_co_3d]
new_local_co_3d = matrix_transform(new_world_co_3d, matrix_inv)
nb_points = len(new_stroke.points)
new_stroke.points.foreach_set('co', new_local_co_3d.reshape(nb_points*3))
new_stroke.points.update()
## Reset autokey status
context.tool_settings.use_keyframe_insert_auto = auto_key_status
return {'FINISHED'}
classes = (
GP_OT_interpolate_stroke_simple,
)
def register():
for c in classes:
bpy.utils.register_class(c)
def unregister():
for c in reversed(classes):
bpy.utils.unregister_class(c)

View File

@ -1,6 +1,6 @@
import bpy import bpy
import numpy as np import numpy as np
from time import perf_counter from time import perf_counter, time
from mathutils import Vector, Matrix from mathutils import Vector, Matrix
from gp_interpolate.utils import (matrix_transform, from gp_interpolate.utils import (matrix_transform,
@ -11,6 +11,7 @@ from gp_interpolate.utils import (matrix_transform,
search_square, search_square,
get_gp_draw_plane, get_gp_draw_plane,
create_plane, create_plane,
following_keys,
attr_set) attr_set)
from mathutils.geometry import (barycentric_transform, from mathutils.geometry import (barycentric_transform,
@ -20,63 +21,6 @@ from mathutils.geometry import (barycentric_transform,
tessellate_polygon) tessellate_polygon)
def following_keys(forward=True, all_keys=True) -> list:# -> list[int] | list | None:
'''return a lsit of int or an empty list'''
direction = 1 if forward else -1
cur_frame = bpy.context.scene.frame_current
settings = bpy.context.scene.gp_interpo_settings
if settings.mode == 'FRAME':
if all_keys:
scn = bpy.context.scene
if forward:
limit = scn.frame_preview_end if scn.use_preview_range else scn.frame_end
else:
limit = scn.frame_preview_start if scn.use_preview_range else scn.frame_start
limit += direction # offset by one for limit to be in range
return list(range(cur_frame, limit, settings.padding * direction))
else:
return [cur_frame + (settings.padding * direction)]
elif settings.mode == 'GPKEY':
layers = bpy.context.object.data.layers
frames = [f.frame_number for l in layers for f in l.frames]
elif settings.mode == 'RIGKEY':
col = settings.target_collection
if not col:
col = bpy.context.scene.collection
for arm in [o for o in col.all_objects if o.type == 'ARMATURE']:
if not arm.animation_data or not arm.animation_data.action:
continue
frames = [k.co.x for fc in arm.animation_data.action.fcurves for k in fc.keyframe_points]
if not frames:
return []
# Sort frames (invert if looking backward)
frames.sort(reversed=not forward)
if all_keys:
frames = list(set(frames))
if forward:
frame_list = [int(f) for f in frames if f > cur_frame]
else:
frame_list = [int(f) for f in frames if f < cur_frame]
return frame_list
if forward:
new = next((f for f in frames if f > cur_frame), None)
else:
new = next((f for f in frames if f < cur_frame), None)
if new is None:
return []
return [int(new)]
## TODO: add bake animation to empty for later GP layer parenting ## TODO: add bake animation to empty for later GP layer parenting
class GP_OT_interpolate_stroke(bpy.types.Operator): class GP_OT_interpolate_stroke(bpy.types.Operator):
@ -118,12 +62,12 @@ class GP_OT_interpolate_stroke(bpy.types.Operator):
gp = context.object gp = context.object
matrix = np.array(gp.matrix_world, dtype='float64')#.inverted() matrix = np.array(gp.matrix_world, dtype='float64')#.inverted()
origin = np.array(scn.camera.matrix_world.to_translation(), 'float64')
col = settings.target_collection col = settings.target_collection
if not col: if not col:
col = scn.collection col = scn.collection
origin = np.array(scn.camera.matrix_world.to_translation(), 'float64')
# print('----') # print('----')
tgt_strokes = [s for s in gp.data.layers.active.active_frame.strokes if s.select] tgt_strokes = [s for s in gp.data.layers.active.active_frame.strokes if s.select]
@ -139,7 +83,7 @@ class GP_OT_interpolate_stroke(bpy.types.Operator):
return {'CANCELLED'} return {'CANCELLED'}
included_cols = [c.name for c in gp.users_collection] included_cols = [c.name for c in gp.users_collection]
start = time()
if settings.method == 'BONE': if settings.method == 'BONE':
## Follow Bone method (WIP) ## Follow Bone method (WIP)
if not settings.target_rig or not settings.target_bone: if not settings.target_rig or not settings.target_bone:
@ -186,14 +130,17 @@ class GP_OT_interpolate_stroke(bpy.types.Operator):
(vlc, 'exclude', vlc.name not in included_cols), (vlc, 'exclude', vlc.name not in included_cols),
# (vlc, 'hide_viewport', vlc.name not in included_cols), # viewport viz # (vlc, 'hide_viewport', vlc.name not in included_cols), # viewport viz
) )
print(f'Preparation {time()-start:.4f}s')
with attr_set(store_list): with attr_set(store_list):
if settings.method == 'BONE': if settings.method == 'BONE':
## replace plane ## replace plane
bone_plane = plane_on_bone(settings.target_rig.pose.bones.get(settings.target_bone), _bone_plane = plane_on_bone(settings.target_rig.pose.bones.get(settings.target_bone),
arm=settings.target_rig, arm=settings.target_rig,
set_rotation=settings.use_bone_rotation, set_rotation=settings.use_bone_rotation,
mesh=True) mesh=True)
## Set collection visibility ## Set collection visibility
intercol = bpy.data.collections.get('interpolation_tool') intercol = bpy.data.collections.get('interpolation_tool')
vl_col = bpy.context.view_layer.layer_collection.children.get(intercol.name) vl_col = bpy.context.view_layer.layer_collection.children.get(intercol.name)
@ -206,7 +153,7 @@ class GP_OT_interpolate_stroke(bpy.types.Operator):
dg = bpy.context.evaluated_depsgraph_get() dg = bpy.context.evaluated_depsgraph_get()
strokes_data = [] strokes_data = []
for stroke in tgt_strokes: for si, stroke in enumerate(tgt_strokes):
nb_points = len(stroke.points) nb_points = len(stroke.points)
local_co = np.empty(nb_points * 3, dtype='float64') local_co = np.empty(nb_points * 3, dtype='float64')
@ -216,29 +163,71 @@ class GP_OT_interpolate_stroke(bpy.types.Operator):
stroke_data = [] stroke_data = []
for i, point in enumerate(stroke.points): for i, point in enumerate(stroke.points):
# print(si, i)
point_co_world = world_co_3d[i] point_co_world = world_co_3d[i]
object_hit, hit_location, tri, tri_indices = ray_cast_point(point_co_world, origin, dg) object_hit, hit_location, tri, tri_indices = ray_cast_point(point_co_world, origin, dg)
##
# try:
# object_hit, hit_location, tri, tri_indices = ray_cast_point(point_co_world, origin, dg)
# except Exception as e:
# print(f'Error on first {si}:{i}')
# self.report({'ERROR'}, f'Error on first {si}:{i}')
# for p in stroke.points:
# p.select = False
# stroke.points[i].select = True
# print(e)
# return {'CANCELLED'}
## with one extra search
if not object_hit or object_hit not in col.all_objects[:]: if not object_hit or object_hit not in col.all_objects[:]:
for square_co in search_square(point_co_world, factor=settings.search_range): for square_co in search_square(point_co_world, factor=settings.search_range):
object_hit, hit_location, tri, tri_indices = ray_cast_point(square_co, origin, dg) object_hit, hit_location, tri, tri_indices = ray_cast_point(square_co, origin, dg)
if object_hit and object_hit in col.all_objects[:]: if object_hit and object_hit in col.all_objects[:]:
hit_location = intersect_line_plane(origin, point_co_world, tri[0], triangle_normal(*tri)) hit_location = intersect_line_plane(origin, point_co_world, tri[0], triangle_normal(*tri))
break break
### with increasing search range
# if not object_hit or object_hit not in col.all_objects[:]:
# found = False
# for iteration in range(1, 6):
# for square_co in search_square(point_co_world, factor=settings.search_range * iteration):
# object_hit, hit_location, tri, tri_indices = ray_cast_point(square_co, origin, dg)
# if object_hit and object_hit in col.all_objects[:]:
# hit_location = intersect_line_plane(origin, point_co_world, tri[0], triangle_normal(*tri))
# found = True
# # print(f'{si}:{i} iteration {iteration}') # Dbg
# context.scene.cursor.location = square_co
# break
# if found:
# break
# if not found:
# ## /!\ ERROR ! No surface found!
# # For debugging, select only problematic stroke (and point)
# for sid, s in enumerate(tgt_strokes):
# s.select = sid == si
# for ip, p in enumerate(stroke.points):
# p.select = ip == i
# self.report({'ERROR'}, f'Stroke {si} point {i} could not find underlying geometry')
# return {'CANCELLED'}
stroke_data.append((stroke, point_co_world, object_hit, hit_location, tri, tri_indices)) stroke_data.append((stroke, point_co_world, object_hit, hit_location, tri, tri_indices))
strokes_data.append(stroke_data) strokes_data.append(stroke_data)
# Copy stroke selection, jump frame and paste scan_time = time()-start
print(f'Scan time {scan_time:.4f}s')
# Copy stroke selection
bpy.ops.gpencil.copy() bpy.ops.gpencil.copy()
# Jump frame and paste
wm = bpy.context.window_manager # Pgs wm = bpy.context.window_manager # Pgs
wm.progress_begin(frames_to_jump[0], frames_to_jump[-1]) # Pgs wm.progress_begin(frames_to_jump[0], frames_to_jump[-1]) # Pgs
for f in frames_to_jump: for f in frames_to_jump:
wm.progress_update(f) # Pgs wm.progress_update(f) # Pgs
scn.frame_set(f) scn.frame_set(f)
@ -256,13 +245,22 @@ class GP_OT_interpolate_stroke(bpy.types.Operator):
new_strokes = gp.data.layers.active.active_frame.strokes[-len(strokes_data):] new_strokes = gp.data.layers.active.active_frame.strokes[-len(strokes_data):]
for new_stroke, stroke_data in zip(new_strokes, strokes_data): for new_stroke, stroke_data in zip(new_strokes, strokes_data):
world_co_3d = [] # np.array(len()dtype='float64')#np. world_co_3d = []
for stroke, point_co, object_hit, hit_location, tri_a, tri_indices in stroke_data: for stroke, point_co, object_hit, hit_location, tri_a, tri_indices in stroke_data:
eval_ob = object_hit.evaluated_get(dg) eval_ob = object_hit.evaluated_get(dg)
tri_b = [eval_ob.data.vertices[i].co for i in tri_indices] tri_b = [eval_ob.data.vertices[i].co for i in tri_indices]
tri_b = matrix_transform(tri_b, eval_ob.matrix_world) tri_b = matrix_transform(tri_b, eval_ob.matrix_world)
new_loc = barycentric_transform(hit_location, *tri_a, *tri_b) new_loc = barycentric_transform(hit_location, *tri_a, *tri_b)
# try:
# new_loc = barycentric_transform(hit_location, *tri_a, *tri_b)
# except Exception as e:
# print(f'\nCould not apply barycentric tranform {eval_ob.name}')
# print(e)
# bpy.context.scene.cursor.location = hit_location
# self.report({'ERROR'}, f'Stroke {si} point {i} could not find underlying geometry')
# return {'CANCELLED'}
world_co_3d.append(new_loc) world_co_3d.append(new_loc)
# Reproject on plane # Reproject on plane
@ -274,200 +272,15 @@ class GP_OT_interpolate_stroke(bpy.types.Operator):
new_stroke.points.update() new_stroke.points.update()
wm.progress_end() # Pgs wm.progress_end() # Pgs
## Reset autokey status
# context.tool_settings.use_keyframe_insert_auto = auto_key_status # (Done in context manager)
## TODO: Remove plane on the fly ## TODO: Remove plane on the fly
print(f"Paste'n'place time {time()-start - scan_time}s")
if len(frames_to_jump) > 1:
self.report({'INFO'}, f'{len(frames_to_jump)} interpolated frame(s) ({time()-start:.3f}s)')
print('Done')
return {'FINISHED'} return {'FINISHED'}
"""
class GP_OT_interpolate_stroke(bpy.types.Operator):
bl_idname = "gp.interpolate_stroke"
bl_label = "Interpolate Stroke"
bl_description = 'Interpolate Stroke'
bl_options = {'REGISTER', 'UNDO'}
@classmethod
def poll(cls, context):
if context.active_object and context.object.type == 'GPENCIL'\
and context.mode in ('EDIT_GPENCIL', 'SCULPT_GPENCIL', 'PAINT_GPENCIL'):
return True
cls.poll_message_set("Need a Grease pencil object in Edit or Sculpt mode")
return False
@classmethod
def description(cls, context, properties):
if properties.next:
return f"Interpolate Stroke Forward"
else:
return f"Interpolate Stroke Backward"
next : bpy.props.BoolProperty(name='Next', default=True, options={'SKIP_SAVE'})
def execute(self, context):
settings = context.scene.gp_interpo_settings
auto_key_status = context.tool_settings.use_keyframe_insert_auto
context.tool_settings.use_keyframe_insert_auto = True
## Determine on what key to jump
frames_to_jump = following_keys(forward=self.next)
if frames_to_jump is None:
self.report({'WARNING'}, 'No keyframe available in this direction')
return {'CANCELLED'}
gp = context.object
scn = bpy.context.scene
dg = bpy.context.evaluated_depsgraph_get()
matrix = np.array(gp.matrix_world, dtype='float64')#.inverted()
col = settings.target_collection
if not col:
col = scn.collection
origin = np.array(scn.camera.matrix_world.to_translation(), 'float64')
# print('----')
tgt_strokes = [s for s in gp.data.layers.active.active_frame.strokes if s.select]
## If nothing selected in sculpt/paint, Select all before triggering
if not tgt_strokes and context.mode in ('SCULPT_GPENCIL', 'PAINT_GPENCIL'):
for s in gp.data.layers.active.active_frame.strokes:
s.select = True
tgt_strokes = gp.data.layers.active.active_frame.strokes
if not tgt_strokes:
self.report({'ERROR'}, 'No stroke selected !')
return {'CANCELLED'}
strokes_data = []
if settings.method == 'BONE':
## Follow Bone method (Full WIP)
if not settings.target_rig or not settings.target_bone:
self.report({'ERROR'}, 'No Bone selected')
return {'CANCELLED'}
bone_plane = plane_on_bone(settings.target_rig.pose.bones.get(settings.target_bone),
arm=settings.target_rig,
set_rotation=settings.use_bone_rotation)
strokes_data = []
for stroke in tgt_strokes:
nb_points = len(stroke.points)
local_co = np.empty(nb_points * 3, dtype='float64')
stroke.points.foreach_get('co', local_co)
# local_co_3d = local_co.reshape((nb_points, 3))
world_co_3d = matrix_transform(local_co.reshape((nb_points, 3)), matrix)
stroke_data = []
for i, point in enumerate(stroke.points):
point_co_world = world_co_3d[i]
hit_location, tri, tri_indices = intersect_with_tesselated_plane(point_co_world, origin, bone_plane)
## probably easier to just generate a single vast triangle and use it
## Store same as other method (without object hit)
stroke_data.append((stroke, point_co_world, hit_location, tri, tri_indices))
strokes_data.append(stroke_data)
else:
## Geometry method
for stroke in tgt_strokes:
nb_points = len(stroke.points)
local_co = np.empty(nb_points * 3, dtype='float64')
stroke.points.foreach_get('co', local_co)
# local_co_3d = local_co.reshape((nb_points, 3))
world_co_3d = matrix_transform(local_co.reshape((nb_points, 3)), matrix)
stroke_data = []
for i, point in enumerate(stroke.points):
point_co_world = world_co_3d[i]
object_hit, hit_location, tri, tri_indices = ray_cast_point(point_co_world, origin, dg)
if not object_hit or object_hit not in col.all_objects[:]:
for square_co in search_square(point_co_world, factor=settings.search_range):
object_hit, hit_location, tri, tri_indices = ray_cast_point(square_co, origin, dg)
if object_hit and object_hit in col.all_objects[:]:
hit_location = intersect_line_plane(origin, point_co_world, tri[0], triangle_normal(*tri))
break
stroke_data.append((stroke, point_co_world, object_hit, hit_location, tri, tri_indices))
strokes_data.append(stroke_data)
# Copy stroke selection, jump frame and paste
bpy.ops.gpencil.copy()
scn.frame_set(frames_to_jump)
plan_co, plane_no = get_gp_draw_plane(gp)
bpy.ops.gpencil.paste()
if settings.method == 'BONE':
matrix_inv = np.array(gp.matrix_world.inverted(), dtype='float64')#.inverted()
new_strokes = gp.data.layers.active.active_frame.strokes[-len(strokes_data):]
bone_plane = plane_on_bone(settings.target_rig.pose.bones.get(settings.target_bone),
arm=settings.target_rig,
set_rotation=settings.use_bone_rotation)
for new_stroke, stroke_data in zip(new_strokes, strokes_data):
world_co_3d = [] # np.array(len()dtype='float64')#np.
for stroke, point_co, hit_location, tri_a, tri_indices in stroke_data:
tri_b = [bone_plane[i] for i in tri_indices]
# tri_b = matrix_transform(tri_b, settings.target_rig.matrix_world)
## rotate tri_b by bone differential angle camera's aim axis ?
new_loc = barycentric_transform(hit_location, *tri_a, *tri_b)
world_co_3d.append(new_loc)
# Reproject on plane
new_world_co_3d = [intersect_line_plane(origin, p, plan_co, plane_no) for p in world_co_3d]
new_local_co_3d = matrix_transform(new_world_co_3d, matrix_inv)
nb_points = len(new_stroke.points)
new_stroke.points.foreach_set('co', new_local_co_3d.reshape(nb_points*3))
new_stroke.points.update()
else:
dg = bpy.context.evaluated_depsgraph_get()
matrix_inv = np.array(gp.matrix_world.inverted(), dtype='float64')#.inverted()
new_strokes = gp.data.layers.active.active_frame.strokes[-len(strokes_data):]
for new_stroke, stroke_data in zip(new_strokes, strokes_data):
world_co_3d = [] # np.array(len()dtype='float64')#np.
for stroke, point_co, object_hit, hit_location, tri_a, tri_indices in stroke_data:
eval_ob = object_hit.evaluated_get(dg)
tri_b = [eval_ob.data.vertices[i].co for i in tri_indices]
tri_b = matrix_transform(tri_b, eval_ob.matrix_world)
new_loc = barycentric_transform(hit_location, *tri_a, *tri_b)
world_co_3d.append(new_loc)
# Reproject on plane
new_world_co_3d = [intersect_line_plane(origin, p, plan_co, plane_no) for p in world_co_3d]
new_local_co_3d = matrix_transform(new_world_co_3d, matrix_inv)
nb_points = len(new_stroke.points)
new_stroke.points.foreach_set('co', new_local_co_3d.reshape(nb_points*3))
new_stroke.points.update()
## Reset autokey status
context.tool_settings.use_keyframe_insert_auto = auto_key_status
return {'FINISHED'}
"""
classes = ( classes = (
GP_OT_interpolate_stroke, GP_OT_interpolate_stroke,

View File

@ -24,14 +24,14 @@ class GP_PG_interpolate_settings(PropertyGroup):
description='Select method for interpolating strokes' description='Select method for interpolating strokes'
) )
use_animation : BoolProperty( use_animation : BoolProperty(name='Animation',
name='Animatation', default=False,
default=True, description='Apply the interpolation on the all keys forward or backward')
description='Apply the interpolation on the remaining range')
search_range : FloatProperty( search_range : FloatProperty(
name="Search Range", name="Search Range",
description="Search range size when points are out of mesh", description="Search range size when points are out of mesh\
\nThe value is as percentage of the camera width",
default=0.05, precision=2, step=3, options={'HIDDEN'}) default=0.05, precision=2, step=3, options={'HIDDEN'})

10
ui.py
View File

@ -17,7 +17,7 @@ class GP_PT_interpolate(bpy.types.Panel):
layout.use_property_split = True layout.use_property_split = True
col = layout.column(align=False) col = layout.column(align=False)
## interpolation buttons ## Interpolation buttons
if settings.mode == 'FRAME': if settings.mode == 'FRAME':
prev_icon, next_icon = 'FRAME_PREV', 'FRAME_NEXT' prev_icon, next_icon = 'FRAME_PREV', 'FRAME_NEXT'
else: else:
@ -26,7 +26,13 @@ class GP_PT_interpolate(bpy.types.Panel):
row.scale_x = 3 row.scale_x = 3
row.operator("gp.interpolate_stroke", text="", icon=prev_icon).next = False row.operator("gp.interpolate_stroke", text="", icon=prev_icon).next = False
row.operator("gp.interpolate_stroke", text="", icon=next_icon).next = True row.operator("gp.interpolate_stroke", text="", icon=next_icon).next = True
# col.separator()
## Old version to test (TODO: delete later)
# col.label(text='Test Old Ops')
# row = col.row(align=True)
# row.scale_x = 3
# row.operator("gp.interpolate_stroke_simple", text="", icon=prev_icon).next = False
# row.operator("gp.interpolate_stroke_simple", text="", icon=next_icon).next = True
col.prop(settings, 'method', text='Method') col.prop(settings, 'method', text='Method')

View File

@ -133,6 +133,8 @@ def plane_on_bone(bone, arm=None, cam=None, set_rotation=True, mesh=True):
else: else:
## Use mid bone to better follow movement ## Use mid bone to better follow movement
mat.translation = arm.matrix_world @ ((bone.tail + bone.head) / 2) # Mid bone mat.translation = arm.matrix_world @ ((bone.tail + bone.head) / 2) # Mid bone
mat_scale = Matrix.Scale(10, 4) # maybe move above mesh condition
if mesh: if mesh:
# get/create collection # get/create collection
@ -155,7 +157,6 @@ def plane_on_bone(bone, arm=None, cam=None, set_rotation=True, mesh=True):
return plane return plane
plane = plane_coords() plane = plane_coords()
mat_scale = Matrix.Scale(10, 4) # maybe move above mesh condition
return matrix_transform(plane, mat @ mat_scale) return matrix_transform(plane, mat @ mat_scale)
def create_plane(name='Plane', collection=None): def create_plane(name='Plane', collection=None):
@ -274,4 +275,63 @@ def get_gp_draw_plane(obj=None):
plane_no.rotate(mat) plane_no.rotate(mat)
return plane_co, plane_no return plane_co, plane_no
## --- Animation
def following_keys(forward=True, all_keys=False) -> list:# -> list[int] | list | None:
'''return a lsit of int or an empty list'''
direction = 1 if forward else -1
cur_frame = bpy.context.scene.frame_current
settings = bpy.context.scene.gp_interpo_settings
if settings.mode == 'FRAME':
if all_keys:
scn = bpy.context.scene
if forward:
limit = scn.frame_preview_end if scn.use_preview_range else scn.frame_end
else:
limit = scn.frame_preview_start if scn.use_preview_range else scn.frame_start
limit += direction # offset by one for limit to be in range
return list(range(cur_frame, limit, settings.padding * direction))
else:
return [cur_frame + (settings.padding * direction)]
elif settings.mode == 'GPKEY':
layers = bpy.context.object.data.layers
frames = [f.frame_number for l in layers for f in l.frames]
elif settings.mode == 'RIGKEY':
col = settings.target_collection
if not col:
col = bpy.context.scene.collection
for arm in [o for o in col.all_objects if o.type == 'ARMATURE']:
if not arm.animation_data or not arm.animation_data.action:
continue
frames = [k.co.x for fc in arm.animation_data.action.fcurves for k in fc.keyframe_points]
if not frames:
return []
# Sort frames (invert if looking backward)
frames.sort(reversed=not forward)
if all_keys:
frames = list(set(frames))
if forward:
frame_list = [int(f) for f in frames if f > cur_frame]
else:
frame_list = [int(f) for f in frames if f < cur_frame]
return frame_list
if forward:
new = next((f for f in frames if f > cur_frame), None)
else:
new = next((f for f in frames if f < cur_frame), None)
if new is None:
return []
return [int(new)]