big code refactor

master
pullusb 2024-07-23 17:25:13 +02:00
parent 94f24ad5f6
commit cb0ea42e19
8 changed files with 510 additions and 407 deletions

View File

@ -1,8 +1,8 @@
bl_info = { bl_info = {
"name": "gp interpolate", "name": "gp interpolate",
"author": "Christophe Seux, Samuel Bernou", "author": "Christophe Seux, Samuel Bernou",
"version": (0, 8, 0), "version": (0, 8, 1),
"blender": (3, 6, 0), "blender": (4, 0, 2),
"location": "Sidebar > Gpencil Tab > Interpolate", "location": "Sidebar > Gpencil Tab > Interpolate",
"description": "Interpolate Grease pencil strokes over 3D", "description": "Interpolate Grease pencil strokes over 3D",
"warning": "", "warning": "",

View File

@ -1,16 +1,16 @@
from gp_interpolate.interpolate_strokes import (operators, from gp_interpolate.interpolate_strokes import (properties,
properties, operators,
operators_triangle,
debug, debug,
bind_points, bind_points,
#interpolate_simple
) )
modules = ( modules = (
properties, properties,
operators, operators,
operators_triangle,
debug, debug,
bind_points, bind_points,
#interpolate_simple,
) )
if "bpy" in locals(): if "bpy" in locals():

View File

@ -22,14 +22,15 @@ from mathutils.geometry import (barycentric_transform,
intersect_line_plane, intersect_line_plane,
tessellate_polygon) tessellate_polygon)
## Converted to modal from "operator_single"
class GP_OT_interpolate_stroke(bpy.types.Operator): class GP_OT_interpolate_stroke_base(bpy.types.Operator):
bl_idname = "gp.interpolate_stroke" bl_idname = "gp.interpolate_stroke_base"
bl_label = "Interpolate Stroke" bl_label = "Interpolate Stroke"
bl_description = 'Interpolate Stroke' bl_description = 'Interpolate Stroke based on user bound triangle'
bl_options = {'REGISTER', 'UNDO'} bl_options = {'REGISTER', 'UNDO'}
next : bpy.props.BoolProperty(name='Next', default=True, options={'SKIP_SAVE'})
@classmethod @classmethod
def poll(cls, context): def poll(cls, context):
if context.active_object and context.object.type == 'GPENCIL'\ if context.active_object and context.object.type == 'GPENCIL'\
@ -45,8 +46,6 @@ class GP_OT_interpolate_stroke(bpy.types.Operator):
else: else:
return f"Interpolate Stroke Backward" return f"Interpolate Stroke Backward"
next : bpy.props.BoolProperty(name='Next', default=True, options={'SKIP_SAVE'})
def apply_and_store(self): def apply_and_store(self):
# self.store = [] # self.store = []
# item = (prop, attr, [new_val]) # item = (prop, attr, [new_val])
@ -60,9 +59,57 @@ class GP_OT_interpolate_stroke(bpy.types.Operator):
for prop, attr, old_val in self.store: for prop, attr, old_val in self.store:
setattr(prop, attr, old_val) setattr(prop, attr, old_val)
def exit_modal(self, context, status='INFO', text=None, cancelled=False):
context.area.header_text_set(None)
wm = context.window_manager
wm.progress_end() # Pgs
wm.event_timer_remove(self.timer)
self.restore()
if self.debug:
if self.scan_time is not None:
print(f"Paste'n'place time {time()-self.start - self.scan_time}s")
else:
if self.settings.method == 'BONE':
## Remove Plane and it's collection after use
if self.plane is not None:
bpy.data.objects.remove(self.plane)
if self.toolcol is not None:
bpy.data.collections.remove(self.toolcol)
cancel_state = '(Stopped!) ' if cancelled else ''
mess = f'{cancel_state}{self.loop_count} interpolated frame(s) ({time()-self.start:.3f}s)'
if text:
print(mess)
self.report({status}, text)
else:
self.report({'INFO'}, mess)
def get_stroke_to_interpolate(self, context):
if not self.gp.data.layers.active:
self.exit_modal(context, status='ERROR', text='No active layer')
return {'CANCELLED'}
if not self.gp.data.layers.active.active_frame:
self.exit_modal(context, status='ERROR', text='No active frame')
return {'CANCELLED'}
## Get strokes to interpolate
tgt_strokes = [s for s in self.gp.data.layers.active.active_frame.strokes if s.select]
## If nothing selected in sculpt/paint, Select all before triggering
if not tgt_strokes and context.mode in ('SCULPT_GPENCIL', 'PAINT_GPENCIL'):
for s in self.gp.data.layers.active.active_frame.strokes:
s.select = True
tgt_strokes = self.gp.data.layers.active.active_frame.strokes
if not tgt_strokes:
self.exit_modal(context, status='ERROR', text='No stroke selected !')
return {'CANCELLED'}
return tgt_strokes
## For now, operators have their own invoke
def invoke(self, context, event): def invoke(self, context, event):
self.debug = False self.debug = False
self.status = 'START'
self.store_list = [] self.store_list = []
self.store = [] self.store = []
self.loop_count = 0 self.loop_count = 0
@ -81,402 +128,288 @@ class GP_OT_interpolate_stroke(bpy.types.Operator):
if interp_col := bpy.data.collections.get('interpolation_tool'): if interp_col := bpy.data.collections.get('interpolation_tool'):
bpy.data.collections.remove(interp_col) bpy.data.collections.remove(interp_col)
context.window_manager.modal_handler_add(self) ## Determine on what key/keys to jump
self._timer = context.window_manager.event_timer_add(0.01, window=context.window) self.frames_to_jump = following_keys(forward=self.next, animation=self.settings.use_animation)
context.area.header_text_set('Starting interpolation | Esc: Cancel') if not len(self.frames_to_jump):
return {'RUNNING_MODAL'} self.exit_modal(context, status='WARNING', text='No keyframe available in this direction')
def exit_modal(self, context, status='INFO', text=None):
context.area.header_text_set(None)
wm = context.window_manager
wm.progress_end() # Pgs
wm.event_timer_remove(self._timer)
self.restore()
if self.debug:
## show as solid ?
# if self.plane is not None:
# self.plane.display_type = 'SOLID'
if self.scan_time is not None:
print(f"Paste'n'place time {time()-self.start - self.scan_time}s")
else:
if self.settings.method == 'BONE':
## Remove Plane and it's collection after use
if self.plane is not None:
bpy.data.objects.remove(self.plane)
if self.toolcol is not None:
bpy.data.collections.remove(self.toolcol)
cancel_state = '(Stopped!) ' if self.cancelled else ''
mess = f'{cancel_state}{self.loop_count} interpolated frame(s) ({time()-self.start:.3f}s)'
if text:
print(mess)
self.report({status}, text)
else:
## report standard info
if self.loop_count > 1:
self.report({'INFO'}, mess)
def modal(self, context, event):
if event.type in {'RIGHTMOUSE', 'ESC'}:
print('Cancelling')
self.status = 'CANCELLED'
self.cancelled = True
context.area.header_text_set(f'Cancelling')
self.exit_modal(context)
return {'CANCELLED'} return {'CANCELLED'}
if self.frames_to_jump: self.timer = context.window_manager.event_timer_add(0.01, window=context.window)
frame_num = len(self.frames_to_jump)
percentage = (self.loop_count) / (frame_num) * 100
context.area.header_text_set(f'Interpolation {percentage:.0f}% {self.loop_count + 1}/{frame_num} | Esc: Cancel')
# (frame: {self.frames_to_jump[self.loop_count]})
if self.status == 'START': ## Converted to modal from "operator_single"
if self.settings.method == 'TRI' and not context.window_manager.get(f'tri_{self.gp.name}'):
self.exit_modal(context, status='ERROR', text='Need to bind coordinate first. Use "Bind Tri Point" button') class GP_OT_interpolate_stroke(GP_OT_interpolate_stroke_base):
bl_idname = "gp.interpolate_stroke"
bl_label = "Interpolate Stroke"
bl_description = 'Interpolate Stroke'
bl_options = {'REGISTER', 'UNDO'}
def iterative_search(self, context, obj, coord, origin, dg):
'''Search geometry for outside point (where raycast did not hit any geometry)
return :
object_hit, hit_location, tri, tri_indices.
None if nothing found
'''
for iteration in range(1, 10):
for square_co in search_square(coord, factor=self.settings.search_range * iteration):
if obj:
object_hit, hit_location, tri, tri_indices = obj_ray_cast(obj, square_co, origin, dg)
else:
# scene raycast
object_hit, hit_location, tri, tri_indices = ray_cast_point(square_co, origin, dg)
if object_hit:
## On location coplanar with face triangle
# hit_location = intersect_line_plane(origin, coord, hit_location, triangle_normal(*tri))
## On view plane
view_vec = context.scene.camera.matrix_world.to_quaternion() @ Vector((0,0,1))
hit_location = intersect_line_plane(origin, coord, hit_location, view_vec)
## An average of the two ?
# hit_location_1 = intersect_line_plane(origin, coord, hit_location, triangle_normal(*tri))
# hit_location_2 = intersect_line_plane(origin, coord, hit_location, view_vec)
# hit_location = (hit_location_1 + hit_location_2) / 2
return object_hit, hit_location, tri, tri_indices
return None, None, None, None
def invoke(self, context, event):
if state := super().invoke(context, event):
return state
scn = bpy.context.scene
origin = scn.camera.matrix_world.to_translation()
tgt_strokes = self.get_stroke_to_interpolate(context)
if isinstance(tgt_strokes, set):
return tgt_strokes
col = self.settings.target_collection
if not col:
col = scn.collection
included_cols = [c.name for c in self.gp.users_collection]
target_obj = None
## Setup depending on method
if self.settings.method == 'BONE':
if not self.settings.target_rig or not self.settings.target_bone:
self.exit_modal(context, status='ERROR', text='No Bone selected')
return {'CANCELLED'} return {'CANCELLED'}
included_cols.append('interpolation_tool')
## Ensure collection and plane exists
# get/create collection
self.toolcol = bpy.data.collections.get('interpolation_tool')
if not self.toolcol:
self.toolcol = bpy.data.collections.new('interpolation_tool')
if self.toolcol.name not in bpy.context.scene.collection.children:
bpy.context.scene.collection.children.link(self.toolcol)
self.toolcol.hide_viewport = True # needed ?
# get/create meshplane
self.plane = bpy.data.objects.get('interpolation_plane')
if not self.plane:
self.plane = create_plane(name='interpolation_plane')
self.plane.select_set(False)
if self.plane.name not in self.toolcol.objects:
self.toolcol.objects.link(self.plane)
target_obj = self.plane
elif self.settings.method == 'GEOMETRY':
if col != context.scene.collection:
included_cols.append(col.name)
## Maybe include a plane just behind geo ? probably bad idea
elif self.settings.method == 'OBJECT':
if not self.settings.target_object:
self.exit_modal(context, status='ERROR', text='No Object selected')
return {'CANCELLED'}
col = scn.collection # Reset collection filter
target_obj = self.settings.target_object
if target_obj.library:
## Look if an override exists in scene to use instead of default object
if (override := next((o for o in scn.objects if o.name == target_obj.name and o.override_library), None)):
target_obj = override
## Prepare context manager
self.store_list = [
# (context.view_layer.objects, 'active', self.gp),
(context.tool_settings, 'use_keyframe_insert_auto', True),
# (bpy.context.scene.render, 'simplify_subdivision', 0),
]
## Set everything in SETUP list
self.apply_and_store()
if self.settings.method == 'BONE':
## replace plane
_bone_plane = plane_on_bone(self.settings.target_rig.pose.bones.get(self.settings.target_bone),
arm=self.settings.target_rig,
set_rotation=self.settings.use_bone_rotation,
mesh=True)
## Set collection visibility
intercol = bpy.data.collections.get('interpolation_tool')
vl_col = bpy.context.view_layer.layer_collection.children.get(intercol.name)
intercol.hide_viewport = vl_col.exclude = vl_col.hide_viewport = False
# Override collection
col = intercol
dg = bpy.context.evaluated_depsgraph_get()
self.strokes_data = []
for stroke_index, stroke in enumerate(tgt_strokes):
stroke_data = []
for point_index, point in enumerate(stroke.points):
point_co_world = self.gp.matrix_world @ point.co
if target_obj:
object_hit, hit_location, tri, tri_indices = obj_ray_cast(target_obj, point_co_world, origin, dg)
else:
# scene raycast
object_hit, hit_location, tri, tri_indices = ray_cast_point(point_co_world, origin, dg)
## Iterative increasing search range when no surface hit
if not object_hit:
object_hit, hit_location, tri, tri_indices = self.iterative_search(context, target_obj, point_co_world, origin, dg)
if not object_hit:
## /!\ ERROR ! No surface found!
# For debugging, select only point.
bpy.ops.gpencil.select_all(action='DESELECT')
point.select = True
self.exit_modal(context, status='ERROR', text=f'Stroke {stroke_index} point {point_index} could not find underlying geometry')
return {'CANCELLED'}
stroke_data.append((stroke, point_co_world, object_hit, hit_location, tri, tri_indices))
self.strokes_data.append(stroke_data)
if self.debug:
self.scan_time = time()-self.start
print(f'Scan time {self.scan_time:.4f}s')
# Copy stroke selection
bpy.ops.gpencil.select_linked() # Ensure whole stroke are selected before copy
bpy.ops.gpencil.copy()
# Jump frame and paste
context.window_manager.progress_begin(self.frames_to_jump[0], self.frames_to_jump[-1]) # Pgs
context.window_manager.modal_handler_add(self)
context.area.header_text_set('Starting interpolation | Esc: Cancel')
return {'RUNNING_MODAL'}
def modal(self, context, event):
frame_num = len(self.frames_to_jump)
percentage = (self.loop_count) / (frame_num) * 100
context.area.header_text_set(f'Interpolation {percentage:.0f}% {self.loop_count + 1}/{frame_num} | Esc: Cancel')
# (frame: {self.frames_to_jump[self.loop_count]})
if event.type in {'RIGHTMOUSE', 'ESC'}:
context.area.header_text_set(f'Cancelling')
self.exit_modal(context, text='Cancelling', cancelled=True)
return {'CANCELLED'}
## -- LOOPTIMER
if event.type == 'TIMER':
f = self.frames_to_jump[self.loop_count]
bpy.context.window_manager.progress_update(f) # Pgs
scn = bpy.context.scene scn = bpy.context.scene
## Determine on what key/keys to jump scn.frame_set(f)
self.frames_to_jump = following_keys(forward=self.next, all_keys=self.settings.use_animation)
if not len(self.frames_to_jump):
self.exit_modal(context, status='WARNING', text='No keyframe available in this direction')
return {'CANCELLED'}
self.gp = context.object
# matrix = np.array(self.gp.matrix_world, dtype='float64')
# origin = np.array(scn.camera.matrix_world.to_translation(), 'float64')
matrix = self.gp.matrix_world
origin = scn.camera.matrix_world.to_translation() origin = scn.camera.matrix_world.to_translation()
plane_co, plane_no = get_gp_draw_plane(self.gp)
col = self.settings.target_collection bpy.ops.gpencil.select_all(action='DESELECT')
if not col: bpy.ops.gpencil.paste()
col = scn.collection
# print('----')
if not self.gp.data.layers.active:
self.exit_modal(context, status='ERROR', text='No active layer')
return {'CANCELLED'}
if not self.gp.data.layers.active.active_frame:
self.exit_modal(context, status='ERROR', text='No active frame')
return {'CANCELLED'}
## Get strokes to interpolate
tgt_strokes = [s for s in self.gp.data.layers.active.active_frame.strokes if s.select]
## If nothing selected in sculpt/paint, Select all before triggering
if not tgt_strokes and context.mode in ('SCULPT_GPENCIL', 'PAINT_GPENCIL'):
for s in self.gp.data.layers.active.active_frame.strokes:
s.select = True
tgt_strokes = self.gp.data.layers.active.active_frame.strokes
if not tgt_strokes:
self.exit_modal(context, status='ERROR', text='No stroke selected !')
return {'CANCELLED'}
included_cols = [c.name for c in self.gp.users_collection]
target_obj = None
## Setup depending on method
if self.settings.method == 'BONE':
if not self.settings.target_rig or not self.settings.target_bone:
self.exit_modal(context, status='ERROR', text='No Bone selected')
return {'CANCELLED'}
included_cols.append('interpolation_tool')
## ensure collection and plane exists
# get/create collection
self.toolcol = bpy.data.collections.get('interpolation_tool')
if not self.toolcol:
self.toolcol = bpy.data.collections.new('interpolation_tool')
if self.toolcol.name not in bpy.context.scene.collection.children:
bpy.context.scene.collection.children.link(self.toolcol)
self.toolcol.hide_viewport = True # needed ?
# get/create meshplane
self.plane = bpy.data.objects.get('interpolation_plane')
if not self.plane:
self.plane = create_plane(name='interpolation_plane')
self.plane.select_set(False)
if self.plane.name not in self.toolcol.objects:
self.toolcol.objects.link(self.plane)
target_obj = self.plane
elif self.settings.method == 'GEOMETRY':
if col != context.scene.collection:
included_cols.append(col.name)
## Maybe include a plane just behind geo ? probably bad idea
elif self.settings.method == 'OBJECT':
if not self.settings.target_object:
self.exit_modal(context, status='ERROR', text='No Object selected')
return {'CANCELLED'}
col = scn.collection # Reset collection filter
target_obj = self.settings.target_object
if target_obj.library:
## Look if an override exists in scene to use instead of default object
if (override := next((o for o in scn.objects if o.name == target_obj.name and o.override_library), None)):
target_obj = override
## Prepare context manager
self.store_list = [
# (context.view_layer.objects, 'active', self.gp),
(context.tool_settings, 'use_keyframe_insert_auto', True),
# (bpy.context.scene.render, 'simplify_subdivision', 0),
]
# TODO: collection filter for GEOMETRY mode optimization
## Hide optimizations (safe for Bone Mode only, if no error)
# if self.settings.method == 'BONE':
# ## TEST: Add collections containing rig (cannot be excluded)
# # rig_parent_cols = [c.name for c in scn.collection.children_recursive if self.settings.target_rig.name in c.all_objects]
# # included_cols += rig_parent_cols
# for vlc in context.view_layer.layer_collection.children:
# self.store_list.append(
# # (vlc, 'exclude', vlc.name not in included_cols), # If excluded rig does not update !
# (vlc, 'hide_viewport', vlc.name not in included_cols), # viewport viz
# )
# print(f'Preparation {time()-start:.4f}s')
## Set everything in SETUP list
self.apply_and_store()
if self.settings.method == 'BONE': if self.settings.method == 'BONE':
## replace plane ## Set plane on the bone
_bone_plane = plane_on_bone(self.settings.target_rig.pose.bones.get(self.settings.target_bone), plane_on_bone(self.settings.target_rig.pose.bones.get(self.settings.target_bone),
arm=self.settings.target_rig, arm=self.settings.target_rig,
set_rotation=self.settings.use_bone_rotation, set_rotation=self.settings.use_bone_rotation,
mesh=True) mesh=True)
## Set collection visibility
intercol = bpy.data.collections.get('interpolation_tool')
vl_col = bpy.context.view_layer.layer_collection.children.get(intercol.name)
intercol.hide_viewport = vl_col.exclude = vl_col.hide_viewport = False
# Override collection
col = intercol
if self.settings.method == 'TRI':
point_dict = context.window_manager.get(f'tri_{self.gp.name}')
## point_dict -> {'0': {'object': object_name_as_str, 'index': 450}, ...}
## Get triangle dumped in context.window_manager
self.object_hit_source = object_hit = [bpy.context.scene.objects.get(point_dict[str(i)]['object']) for i in range(3)]
self.tri_indices_source = tri_indices = [point_dict[str(i)]['index'] for i in range(3)] # List of vertices index corresponding to tri coordinates
tri = []
dg = bpy.context.evaluated_depsgraph_get()
for source_obj, idx in zip(object_hit, tri_indices):
ob_eval = source_obj.evaluated_get(dg)
tri.append(ob_eval.matrix_world @ ob_eval.data.vertices[idx].co)
dg = bpy.context.evaluated_depsgraph_get() dg = bpy.context.evaluated_depsgraph_get()
self.strokes_data = [] # Get only just pasted strokes
new_strokes = [s for s in self.gp.data.layers.active.active_frame.strokes if s.select]
# new_strokes = self.gp.data.layers.active.active_frame.strokes[-len(self.strokes_data):]
for si, stroke in enumerate(tgt_strokes): # For new_stroke, stroke_data in zip(new_strokes, self.strokes_data):
nb_points = len(stroke.points) for new_stroke, stroke_data in zip(list(new_strokes), list(self.strokes_data)):
world_co_3d = []
for stroke, point_co, object_hit, hit_location, tri_a, tri_indices in stroke_data:
eval_ob = object_hit.evaluated_get(dg)
tri_b = [eval_ob.matrix_world @ eval_ob.data.vertices[i].co for i in tri_indices]
local_co = np.empty(nb_points * 3, dtype='float64') new_loc = barycentric_transform(hit_location, *tri_a, *tri_b)
stroke.points.foreach_get('co', local_co) world_co_3d.append(new_loc)
# local_co_3d = local_co.reshape((nb_points, 3))
world_co_3d = matrix_transform(local_co.reshape((nb_points, 3)), matrix)
stroke_data = [] ## Reproject on plane
for i, point in enumerate(stroke.points): new_world_co_3d = [intersect_line_plane(origin, p, plane_co, plane_no) for p in world_co_3d]
point_co_world = world_co_3d[i] new_local_co_3d = [co for coord in new_world_co_3d for co in self.gp.matrix_world.inverted() @ coord]
new_stroke.points.foreach_set('co', new_local_co_3d)
new_stroke.points.update()
if self.settings.method == 'TRI': ## Occlusion management
## Set hit location at same coordinate as point if self.settings.method == 'GEOMETRY' and self.settings.remove_occluded:
# hit_location = point_co_world viz_list = [True]*len(world_co_3d)
## Set hit location on tri plane for i, nco in enumerate(world_co_3d):
hit_location = intersect_line_plane(origin, point_co_world, tri[0], triangle_normal(*tri)) vec_direction = nco - origin
## Reduced distance slightly to avoid occlusion on same source...
dist = vec_direction.length - 0.001
n_hit, _, _, _, _, _ = scn.ray_cast(dg, origin, vec_direction, distance=dist)
# If there is a hit, it's occluded
if n_hit:
viz_list[i] = False
# In this case object_hit is a list of object ! if all(viz_list):
stroke_data.append((stroke, point_co_world, object_hit, hit_location, tri, tri_indices)) # All visible, do nothing (just keep previous stroke)
continue continue
if target_obj: if any(viz_list):
object_hit, hit_location, tri, tri_indices = obj_ray_cast(target_obj, Vector(point_co_world), origin, dg) # Create sub-strokes according to indices in original stroke
else: for sublist in index_list_from_bools(viz_list):
# scene raycast ## Clear if only one isolated point ?
object_hit, hit_location, tri, tri_indices = ray_cast_point(point_co_world, origin, dg) if len(sublist) == 1:
continue
## Increasing search range ns = self.gp.data.layers.active.active_frame.strokes.new()
if not object_hit: # or object_hit not in col.all_objects[:]: for elem in ('hardness', 'material_index', 'line_width'):
found = False setattr(ns, elem, getattr(new_stroke, elem))
for iteration in range(1, 6):
for square_co in search_square(point_co_world, factor=self.settings.search_range * iteration):
if target_obj: ns.points.add(len(sublist))
object_hit, hit_location, tri, tri_indices = obj_ray_cast(target_obj, Vector(square_co), origin, dg) for i, point_index in enumerate(sublist):
else: for elem in ('uv_factor', 'uv_fill', 'uv_rotation', 'pressure', 'co', 'strength', 'vertex_color'):
# scene raycast setattr(ns.points[i], elem, getattr(new_stroke.points[point_index], elem))
object_hit, hit_location, tri, tri_indices = ray_cast_point(square_co, origin, dg)
if object_hit: ## Delete original stroke
## On location coplanar with face triangle self.gp.data.layers.active.active_frame.strokes.remove(new_stroke)
# hit_location = intersect_line_plane(origin, point_co_world, hit_location, triangle_normal(*tri))
## On view plane self.loop_count += 1
view_vec = context.scene.camera.matrix_world.to_quaternion() @ Vector((0,0,1)) if self.loop_count >= len(self.frames_to_jump):
hit_location = intersect_line_plane(origin, point_co_world, hit_location, view_vec) self.exit_modal(context)
return {'FINISHED'}
## An average of the two ? bpy.ops.wm.redraw_timer(type='DRAW_WIN_SWAP', iterations=1)
# hit_location_1 = intersect_line_plane(origin, point_co_world, hit_location, triangle_normal(*tri)) # context.area.tag_redraw()
# hit_location_2 = intersect_line_plane(origin, point_co_world, hit_location, view_vec)
# hit_location = (hit_location_1 + hit_location_2) / 2
found = True
# print(f'{si}:{i} iteration {iteration}') # Dbg
break
if found:
break
if not found:
## /!\ ERROR ! No surface found!
# For debugging, select only problematic stroke (and point)
for sid, s in enumerate(tgt_strokes):
s.select = sid == si
for ip, p in enumerate(stroke.points):
p.select = ip == i
self.exit_modal(context, status='ERROR', text=f'Stroke {si} point {i} could not find underlying geometry')
return {'CANCELLED'}
stroke_data.append((stroke, point_co_world, object_hit, hit_location, tri, tri_indices))
self.strokes_data.append(stroke_data)
if self.debug:
self.scan_time = time()-self.start
print(f'Scan time {self.scan_time:.4f}s')
# Copy stroke selection
bpy.ops.gpencil.select_linked() # Ensure whole stroke are selected before copy
bpy.ops.gpencil.copy()
# Jump frame and paste
bpy.context.window_manager.progress_begin(self.frames_to_jump[0], self.frames_to_jump[-1]) # Pgs
self.status = 'LOOP'
## -- LOOPTIMER
if event.type == 'TIMER':
if self.status == 'LOOP':
f = self.frames_to_jump[self.loop_count]
bpy.context.window_manager.progress_update(f) # Pgs
scn = bpy.context.scene
scn.frame_set(f)
origin = scn.camera.matrix_world.to_translation()
# origin = np.array(scn.camera.matrix_world.to_translation(), 'float64')
plan_co, plane_no = get_gp_draw_plane(self.gp)
bpy.ops.gpencil.paste()
if self.settings.method == 'BONE':
bone_plane = plane_on_bone(self.settings.target_rig.pose.bones.get(self.settings.target_bone),
arm=self.settings.target_rig,
set_rotation=self.settings.use_bone_rotation,
mesh=True)
dg = bpy.context.evaluated_depsgraph_get()
matrix_inv = np.array(self.gp.matrix_world.inverted(), dtype='float64')#.inverted()
new_strokes = self.gp.data.layers.active.active_frame.strokes[-len(self.strokes_data):]
if self.settings.method == 'TRI':
## All points have the same new frame triangle (tri_b)
tri_b = []
for source_obj, idx in zip(self.object_hit_source, self.tri_indices_source):
ob_eval = source_obj.evaluated_get(dg)
tri_b.append(ob_eval.matrix_world @ ob_eval.data.vertices[idx].co)
# for new_stroke, stroke_data in zip(new_strokes, self.strokes_data):
for new_stroke, stroke_data in zip(reversed(new_strokes), reversed(self.strokes_data)):
world_co_3d = []
for stroke, point_co, object_hit, hit_location, tri_a, tri_indices in stroke_data:
if not self.settings.method == 'TRI':
eval_ob = object_hit.evaluated_get(dg)
tri_b = [eval_ob.data.vertices[i].co for i in tri_indices]
tri_b = matrix_transform(tri_b, eval_ob.matrix_world)
new_loc = barycentric_transform(hit_location, *tri_a, *tri_b)
# try:
# new_loc = barycentric_transform(hit_location, *tri_a, *tri_b)
# except Exception as e:
# print(f'\nCould not apply barycentric tranform {eval_ob.name}')
# print(e)
# # bpy.context.scene.cursor.location = hit_location
# self.report({'ERROR'}, f'Stroke {si} point {i} could not find underlying geometry')
# return {'CANCELLED'}
world_co_3d.append(new_loc)
## Test with point in 3D space (Debug)
# nb_points = len(new_stroke.points)
# new_stroke.points.foreach_set('co', np.array(world_co_3d).reshape(nb_points*3))
# new_stroke.points.update()
## Reproject on plane
new_world_co_3d = [intersect_line_plane(origin, p, plan_co, plane_no) for p in world_co_3d]
new_local_co_3d = matrix_transform(new_world_co_3d, matrix_inv)
nb_points = len(new_stroke.points)
new_stroke.points.foreach_set('co', new_local_co_3d.reshape(nb_points*3))
new_stroke.points.update()
## Occlusion management
if self.settings.method == 'GEOMETRY' and self.settings.remove_occluded:
viz_list = [True]*len(world_co_3d)
for i, nco in enumerate(world_co_3d):
vec_direction = nco - origin
## Reduced distance slightly to avoid occlusion on same source...
dist = vec_direction.length - 0.001
n_hit, _hit_location, _normal, _n_face_index, n_object_hit, _matrix = scn.ray_cast(dg, origin, vec_direction, distance=dist)
# if there is a hit, it's occluded
if n_hit:
viz_list[i] = False
if all(viz_list):
# All visible, do nothing (just keep previous stroke)
continue
if any(viz_list):
# Create sub-strokes according to indices in original stroke
for sublist in index_list_from_bools(viz_list):
## Clear if only one isolated point ?
if len(sublist) == 1:
continue
ns = self.gp.data.layers.active.active_frame.strokes.new()
for elem in ('hardness', 'material_index', 'line_width'):
setattr(ns, elem, getattr(new_stroke, elem))
ns.points.add(len(sublist))
for i, point_index in enumerate(sublist):
for elem in ('uv_factor', 'uv_fill', 'uv_rotation', 'pressure', 'co', 'strength', 'vertex_color'):
setattr(ns.points[i], elem, getattr(new_stroke.points[point_index], elem))
## Delete original stroke
self.gp.data.layers.active.active_frame.strokes.remove(new_stroke)
self.loop_count += 1
if self.loop_count >= len(self.frames_to_jump):
self.exit_modal(context)
return {'FINISHED'}
bpy.ops.wm.redraw_timer(type='DRAW_WIN_SWAP', iterations=1)
# context.area.tag_redraw()
return {'RUNNING_MODAL'} return {'RUNNING_MODAL'}
classes = ( classes = (
GP_OT_interpolate_stroke_base,
GP_OT_interpolate_stroke, GP_OT_interpolate_stroke,
) )

View File

@ -59,7 +59,7 @@ class GP_OT_interpolate_stroke(bpy.types.Operator):
# context.tool_settings.use_keyframe_insert_auto = True # context.tool_settings.use_keyframe_insert_auto = True
## Determine on what key/keys to jump ## Determine on what key/keys to jump
frames_to_jump = following_keys(forward=self.next, all_keys=settings.use_animation) frames_to_jump = following_keys(forward=self.next, animation=settings.use_animation)
if not len(frames_to_jump): if not len(frames_to_jump):
self.report({'WARNING'}, 'No keyframe available in this direction') self.report({'WARNING'}, 'No keyframe available in this direction')
return {'CANCELLED'} return {'CANCELLED'}

View File

@ -0,0 +1,178 @@
import bpy
import numpy as np
from time import perf_counter, time, sleep
from mathutils import Vector, Matrix
from ..utils import (matrix_transform,
plane_on_bone,
ray_cast_point,
obj_ray_cast,
intersect_with_tesselated_plane,
triangle_normal,
search_square,
get_gp_draw_plane,
create_plane,
following_keys,
index_list_from_bools,
attr_set)
from mathutils.geometry import (barycentric_transform,
intersect_point_tri,
intersect_point_line,
intersect_line_plane,
tessellate_polygon)
from .operators import GP_OT_interpolate_stroke_base
## Converted to modal from "operator_single"
class GP_OT_interpolate_stroke_tri(GP_OT_interpolate_stroke_base):
bl_idname = "gp.interpolate_stroke_tri"
bl_label = "Interpolate Stroke"
bl_description = 'Interpolate Stroke based on user bound triangle'
bl_options = {'REGISTER', 'UNDO'}
def invoke(self, context, event):
if state := super().invoke(context, event):
return state
## START
if not context.window_manager.get(f'tri_{self.gp.name}'):
self.exit_modal(context, status='ERROR', text='Need to bind coordinate first. Use "Bind Tri Point" button')
return {'CANCELLED'}
scn = bpy.context.scene
origin = scn.camera.matrix_world.to_translation()
tgt_strokes = self.get_stroke_to_interpolate(context)
if isinstance(tgt_strokes, set):
return tgt_strokes
target_obj = None
## Prepare context manager
self.store_list = [
# (context.view_layer.objects, 'active', self.gp),
(context.tool_settings, 'use_keyframe_insert_auto', True),
# (bpy.context.scene.render, 'simplify_subdivision', 0),
]
## Set everything in SETUP list
self.apply_and_store()
point_dict = context.window_manager.get(f'tri_{self.gp.name}')
## point_dict -> {'0': {'object': object_name_as_str, 'index': 450}, ...}
## Get triangle dumped in context.window_manager
self.source_object_list = [bpy.context.scene.objects.get(point_dict[str(i)]['object']) for i in range(3)]
self.source_tri_indices = [point_dict[str(i)]['index'] for i in range(3)] # List of vertices index corresponding to tri coordinates
dg = bpy.context.evaluated_depsgraph_get()
## Get tri at source frame
tri = []
for source_obj, idx in zip(self.source_object_list, self.source_tri_indices):
ob_eval = source_obj.evaluated_get(dg)
tri.append(ob_eval.matrix_world @ ob_eval.data.vertices[idx].co)
self.strokes_data = []
for stroke in tgt_strokes:
stroke_data = []
for point in stroke.points:
point_co_world = self.gp.matrix_world @ point.co
## Set hit location at same coordinate as point
# hit_location = point_co_world
## Set hit location on tri plane
hit_location = intersect_line_plane(origin, point_co_world, tri[0], triangle_normal(*tri))
stroke_data.append((hit_location, tri))
self.strokes_data.append(stroke_data)
if self.debug:
self.scan_time = time()-self.start
print(f'Scan time {self.scan_time:.4f}s')
# Copy stroke selection
bpy.ops.gpencil.select_linked() # Ensure whole stroke are selected before copy
bpy.ops.gpencil.copy()
# Jump frame and paste
bpy.context.window_manager.progress_begin(self.frames_to_jump[0], self.frames_to_jump[-1]) # Pgs
context.window_manager.modal_handler_add(self)
context.area.header_text_set('Starting interpolation | Esc: Cancel')
return {'RUNNING_MODAL'}
def modal(self, context, event):
frame_num = len(self.frames_to_jump)
percentage = (self.loop_count) / (frame_num) * 100
context.area.header_text_set(f'Interpolation {percentage:.0f}% {self.loop_count + 1}/{frame_num} | Esc: Cancel')
if event.type in {'RIGHTMOUSE', 'ESC'}:
context.area.header_text_set(f'Cancelling')
self.exit_modal(context, text='Cancelling', cancelled=True)
return {'CANCELLED'}
## -- LOOPTIMER
if event.type == 'TIMER':
f = self.frames_to_jump[self.loop_count]
bpy.context.window_manager.progress_update(f) # Pgs
scn = bpy.context.scene
scn.frame_set(f)
origin = scn.camera.matrix_world.to_translation()
plane_co, plane_no = get_gp_draw_plane(self.gp)
bpy.ops.gpencil.paste()
dg = bpy.context.evaluated_depsgraph_get()
matrix_inv = np.array(self.gp.matrix_world.inverted(), dtype='float64')
new_strokes = self.gp.data.layers.active.active_frame.strokes[-len(self.strokes_data):]
## Get user triangle position at current frame
tri_b = []
for source_obj, idx in zip(self.source_object_list, self.source_tri_indices):
ob_eval = source_obj.evaluated_get(dg)
tri_b.append(ob_eval.matrix_world @ ob_eval.data.vertices[idx].co)
## Apply
for new_stroke, stroke_data in zip(reversed(new_strokes), reversed(self.strokes_data)):
world_co_3d = []
# for stroke, point_co, object_hit, hit_location, tri_a, indices in stroke_data:
for hit_location, tri_a in stroke_data:
new_loc = barycentric_transform(hit_location, *tri_a, *tri_b)
world_co_3d.append(new_loc)
## Reproject on plane
new_world_co_3d = [intersect_line_plane(origin, p, plane_co, plane_no) for p in world_co_3d]
new_local_co_3d = matrix_transform(new_world_co_3d, matrix_inv)
nb_points = len(new_stroke.points)
new_stroke.points.foreach_set('co', new_local_co_3d.reshape(nb_points*3))
new_stroke.points.update()
## Setup next loop and redraw
self.loop_count += 1
if self.loop_count >= len(self.frames_to_jump):
self.exit_modal(context)
return {'FINISHED'}
bpy.ops.wm.redraw_timer(type='DRAW_WIN_SWAP', iterations=1)
return {'RUNNING_MODAL'}
classes = (
GP_OT_interpolate_stroke_tri,
)
def register():
for c in classes:
bpy.utils.register_class(c)
def unregister():
for c in reversed(classes):
bpy.utils.unregister_class(c)

View File

@ -44,7 +44,7 @@ class GP_PG_interpolate_settings(PropertyGroup):
name='Mode', name='Mode',
# Combined ?markers ? # Combined ?markers ?
items= ( items= (
('FRAME', 'Frame', 'prev/next scene frame depending on the padding options', 0), ('FRAME', 'Frame', 'prev/next scene frame depending on the step options', 0),
('GPKEY', 'GP Key', 'prev/next Grease pencil key', 1) , ('GPKEY', 'GP Key', 'prev/next Grease pencil key', 1) ,
('RIGKEY', 'Rig Key', 'prev/next armatures keys in targeted collection (camera keys are included)', 2), ('RIGKEY', 'Rig Key', 'prev/next armatures keys in targeted collection (camera keys are included)', 2),
), ),
@ -52,7 +52,7 @@ class GP_PG_interpolate_settings(PropertyGroup):
description='Select how the previous or next frame should be chosen' description='Select how the previous or next frame should be chosen'
) )
padding : IntProperty(name='Padding', step : IntProperty(name='Step',
description='Number of frame to jump backward or forward', description='Number of frame to jump backward or forward',
default=2, default=2,
min=1) min=1)

8
ui.py
View File

@ -31,11 +31,11 @@ class GP_PT_interpolate(bpy.types.Panel):
prev_text = f'{scn.frame_preview_start if scn.use_preview_range else scn.frame_start} < {scn.frame_current}' prev_text = f'{scn.frame_preview_start if scn.use_preview_range else scn.frame_start} < {scn.frame_current}'
next_text = f'{scn.frame_current} > {scn.frame_preview_end if scn.use_preview_range else scn.frame_end}' next_text = f'{scn.frame_current} > {scn.frame_preview_end if scn.use_preview_range else scn.frame_end}'
row = col.row(align=True) row = col.row(align=True)
row.scale_x = 3 row.scale_x = 3
row.operator("gp.interpolate_stroke", text=prev_text, icon=prev_icon).next = False ops_id = "gp.interpolate_stroke_tri" if settings.method == 'TRI' else "gp.interpolate_stroke"
row.operator("gp.interpolate_stroke", text=next_text, icon=next_icon).next = True row.operator(ops_id, text=prev_text, icon=prev_icon).next = False
row.operator(ops_id, text=next_text, icon=next_icon).next = True
col.prop(settings, 'use_animation', text='Animation') col.prop(settings, 'use_animation', text='Animation')
col.prop(settings, 'method', text='Method') col.prop(settings, 'method', text='Method')
@ -62,7 +62,7 @@ class GP_PT_interpolate(bpy.types.Panel):
row.prop(settings, 'mode', expand=True) row.prop(settings, 'mode', expand=True)
if settings.mode == 'FRAME': if settings.mode == 'FRAME':
col.prop(settings, 'padding') col.prop(settings, 'step', text='Step')
if settings.mode == 'RIGKEY': if settings.mode == 'RIGKEY':
col.prop(settings, 'target_collection', text='Collection') col.prop(settings, 'target_collection', text='Collection')

View File

@ -53,16 +53,9 @@ def triangle_normal(p1, p2, p3):
normal.normalize() normal.normalize()
return normal return normal
## Bad normal calculation !!
# def triangle_normal(a, b, c):
# x = a[1] * b[2] - a[2] * b[1]
# y = a[2] * b[0] - a[0] * b[2]
# z = a[0] * b[1] - a[1] * b[0]
# return np.array([x, y, z], dtype='float64')
def plane_coords(size=1): def plane_coords(size=1):
v = size * 0.5 v = size * 0.5
return np.array([(-v, v, 0), (v, v, 0), (v, -v, 0), (-v, -v, 0)], dtype='float64') return [Vector((-v, v, 0)), Vector((v, v, 0)), Vector((v, -v, 0)), Vector((-v, -v, 0))]
def matrix_transform(coords, matrix): def matrix_transform(coords, matrix):
coords_4d = np.column_stack((coords, np.ones(len(coords), dtype='float64'))) coords_4d = np.column_stack((coords, np.ones(len(coords), dtype='float64')))
@ -84,13 +77,14 @@ def search_square(point, factor=0.05, cam=None):
depth = vector_magnitude(point - cam.matrix_world.to_translation()) depth = vector_magnitude(point - cam.matrix_world.to_translation())
mat_scale = Matrix.Scale(tan(cam.data.angle * 0.5) * depth * factor, 4) mat_scale = Matrix.Scale(tan(cam.data.angle * 0.5) * depth * factor, 4)
return matrix_transform(plane, mat @ mat_scale) final_matrix = mat @ mat_scale
return [final_matrix @ co for co in plane]
def get_tri_from_face(hit_location, face_index, object_hit, depsgraph): def get_tri_from_face(hit_location, face_index, object_hit, depsgraph):
eval_ob = object_hit.evaluated_get(depsgraph) eval_ob = object_hit.evaluated_get(depsgraph)
face = eval_ob.data.polygons[face_index] face = eval_ob.data.polygons[face_index]
vertices = [eval_ob.data.vertices[i] for i in face.vertices] vertices = [eval_ob.data.vertices[i] for i in face.vertices]
face_co = matrix_transform([v.co for v in vertices], eval_ob.matrix_world) face_co = [eval_ob.matrix_world @ v.co for v in vertices]
tri = None tri = None
for tri_idx in tessellate_polygon([face_co]): for tri_idx in tessellate_polygon([face_co]):
@ -423,7 +417,7 @@ def get_gp_draw_plane(obj=None):
## --- Animation ## --- Animation
def following_keys(forward=True, all_keys=False) -> list:# -> list[int] | list | None: def following_keys(forward=True, animation=False) -> list:# -> list[int] | list | None:
'''Return a list of int or an empty list''' '''Return a list of int or an empty list'''
direction = 1 if forward else -1 direction = 1 if forward else -1
cur_frame = bpy.context.scene.frame_current cur_frame = bpy.context.scene.frame_current
@ -437,15 +431,15 @@ def following_keys(forward=True, all_keys=False) -> list:# -> list[int] | list |
frames = [] frames = []
if settings.mode == 'FRAME': if settings.mode == 'FRAME':
jump = settings.padding * direction jump = settings.step * direction
if all_keys: if animation:
limit += direction # offset by one for limit to be in range limit += direction # offset by one for limit to be in range
return list(range(cur_frame + jump , limit, jump)) return list(range(cur_frame + jump , limit, jump))
else: else:
return [cur_frame + jump] return [cur_frame + jump]
elif settings.mode == 'GPKEY': if settings.mode == 'GPKEY':
layers = bpy.context.object.data.layers layers = bpy.context.object.data.layers
frames = [f.frame_number for l in layers for f in l.frames] frames = [f.frame_number for l in layers for f in l.frames]
@ -462,30 +456,28 @@ def following_keys(forward=True, all_keys=False) -> list:# -> list[int] | list |
print(obj.name) print(obj.name)
if not obj.animation_data or not obj.animation_data.action: if not obj.animation_data or not obj.animation_data.action:
continue continue
frames += [k.co.x for fc in obj.animation_data.action.fcurves for k in fc.keyframe_points] frames += [round(k.co.x) for fc in obj.animation_data.action.fcurves for k in fc.keyframe_points]
if not frames: if not frames:
return [] return []
# Sort frames (invert if looking backward) # Sort frames (invert if looking backward)
frames = list(set(frames))
frames.sort(reverse=not forward) frames.sort(reverse=not forward)
if all_keys: if animation:
frames = list(set(frames))
if forward: if forward:
frame_list = [int(f) for f in frames if f > cur_frame and f <= limit] frame_list = [f for f in frames if cur_frame < f <= limit]
else: else:
frame_list = [int(f) for f in frames if f < cur_frame and f >= limit] frame_list = [f for f in frames if limit <= f < cur_frame]
return frame_list return frame_list
## Single frame
if forward: if forward:
new = next((f for f in frames if f > cur_frame), None) frame_list = next(([f] for f in frames if f > cur_frame), [])
else: else:
new = next((f for f in frames if f < cur_frame), None) frame_list = next(([f] for f in frames if f < cur_frame), [])
if new is None: return frame_list
return []
return [int(new)]
def index_list_from_bools(bool_list) -> list: def index_list_from_bools(bool_list) -> list: