gp_interpolate/interpolate_strokes/operators.py

491 lines
23 KiB
Python

import bpy
import numpy as np
from time import perf_counter, time, sleep
from mathutils import Vector, Matrix
from ..utils import (matrix_transform,
plane_on_bone,
ray_cast_point,
obj_ray_cast,
intersect_with_tesselated_plane,
triangle_normal,
search_square,
get_gp_draw_plane,
create_plane,
following_keys,
index_list_from_bools,
attr_set)
from mathutils.geometry import (barycentric_transform,
intersect_point_tri,
intersect_point_line,
intersect_line_plane,
tessellate_polygon)
## Converted to modal from "operator_single"
class GP_OT_interpolate_stroke(bpy.types.Operator):
bl_idname = "gp.interpolate_stroke"
bl_label = "Interpolate Stroke"
bl_description = 'Interpolate Stroke'
bl_options = {'REGISTER', 'UNDO'}
@classmethod
def poll(cls, context):
if context.active_object and context.object.type == 'GPENCIL'\
and context.mode in ('EDIT_GPENCIL', 'SCULPT_GPENCIL', 'PAINT_GPENCIL'):
return True
cls.poll_message_set("Need a Grease pencil object in Edit or Sculpt mode")
return False
@classmethod
def description(cls, context, properties):
if properties.next:
return f"Interpolate Stroke Forward"
else:
return f"Interpolate Stroke Backward"
next : bpy.props.BoolProperty(name='Next', default=True, options={'SKIP_SAVE'})
def apply_and_store(self):
# self.store = []
# item = (prop, attr, [new_val])
for item in self.store_list:
prop, attr = item[:2]
self.store.append( (prop, attr, getattr(prop, attr)) )
if len(item) >= 3:
setattr(prop, attr, item[2])
def restore(self):
for prop, attr, old_val in self.store:
setattr(prop, attr, old_val)
def invoke(self, context, event):
self.debug = False
self.status = 'START'
self.store_list = []
self.store = []
self.loop_count = 0
self.start = time()
self.scan_time = None
self.plane = None
self.toolcol = None
self.gp = context.object
self.settings = context.scene.gp_interpo_settings
self.frames_to_jump = None
self.cancelled = False
## Remove interpolation_plane collection ! (unseen, but can be hit)
if interp_plane := bpy.data.objects.get('interpolation_plane'):
bpy.data.objects.remove(interp_plane)
if interp_col := bpy.data.collections.get('interpolation_tool'):
bpy.data.collections.remove(interp_col)
context.window_manager.modal_handler_add(self)
self._timer = context.window_manager.event_timer_add(0.01, window=context.window)
context.area.header_text_set('Starting interpolation | Esc: Cancel')
return {'RUNNING_MODAL'}
def exit_modal(self, context, status='INFO', text=None):
context.area.header_text_set(None)
wm = context.window_manager
wm.progress_end() # Pgs
wm.event_timer_remove(self._timer)
self.restore()
if self.debug:
## show as solid ?
# if self.plane is not None:
# self.plane.display_type = 'SOLID'
if self.scan_time is not None:
print(f"Paste'n'place time {time()-self.start - self.scan_time}s")
else:
if self.settings.method == 'BONE':
## Remove Plane and it's collection after use
if self.plane is not None:
bpy.data.objects.remove(self.plane)
if self.toolcol is not None:
bpy.data.collections.remove(self.toolcol)
cancel_state = '(Stopped!) ' if self.cancelled else ''
mess = f'{cancel_state}{self.loop_count} interpolated frame(s) ({time()-self.start:.3f}s)'
if text:
print(mess)
self.report({status}, text)
else:
## report standard info
if self.loop_count > 1:
self.report({'INFO'}, mess)
def modal(self, context, event):
if event.type in {'RIGHTMOUSE', 'ESC'}:
print('Cancelling')
self.status = 'CANCELLED'
self.cancelled = True
context.area.header_text_set(f'Cancelling')
self.exit_modal(context)
return {'CANCELLED'}
if self.frames_to_jump:
frame_num = len(self.frames_to_jump)
percentage = (self.loop_count) / (frame_num) * 100
context.area.header_text_set(f'Interpolation {percentage:.0f}% {self.loop_count + 1}/{frame_num} | Esc: Cancel')
# (frame: {self.frames_to_jump[self.loop_count]})
if self.status == 'START':
if self.settings.method == 'TRI' and not context.window_manager.get(f'tri_{self.gp.name}'):
self.exit_modal(context, status='ERROR', text='Need to bind coordinate first. Use "Bind Tri Point" button')
return {'CANCELLED'}
scn = bpy.context.scene
## Determine on what key/keys to jump
self.frames_to_jump = following_keys(forward=self.next, all_keys=self.settings.use_animation)
if not len(self.frames_to_jump):
self.exit_modal(context, status='WARNING', text='No keyframe available in this direction')
return {'CANCELLED'}
self.gp = context.object
# matrix = np.array(self.gp.matrix_world, dtype='float64')
# origin = np.array(scn.camera.matrix_world.to_translation(), 'float64')
matrix = self.gp.matrix_world
origin = scn.camera.matrix_world.to_translation()
col = self.settings.target_collection
if not col:
col = scn.collection
# print('----')
if not self.gp.data.layers.active:
self.exit_modal(context, status='ERROR', text='No active layer')
return {'CANCELLED'}
if not self.gp.data.layers.active.active_frame:
self.exit_modal(context, status='ERROR', text='No active frame')
return {'CANCELLED'}
## Get strokes to interpolate
tgt_strokes = [s for s in self.gp.data.layers.active.active_frame.strokes if s.select]
## If nothing selected in sculpt/paint, Select all before triggering
if not tgt_strokes and context.mode in ('SCULPT_GPENCIL', 'PAINT_GPENCIL'):
for s in self.gp.data.layers.active.active_frame.strokes:
s.select = True
tgt_strokes = self.gp.data.layers.active.active_frame.strokes
if not tgt_strokes:
self.exit_modal(context, status='ERROR', text='No stroke selected !')
return {'CANCELLED'}
included_cols = [c.name for c in self.gp.users_collection]
target_obj = None
## Setup depending on method
if self.settings.method == 'BONE':
if not self.settings.target_rig or not self.settings.target_bone:
self.exit_modal(context, status='ERROR', text='No Bone selected')
return {'CANCELLED'}
included_cols.append('interpolation_tool')
## ensure collection and plane exists
# get/create collection
self.toolcol = bpy.data.collections.get('interpolation_tool')
if not self.toolcol:
self.toolcol = bpy.data.collections.new('interpolation_tool')
if self.toolcol.name not in bpy.context.scene.collection.children:
bpy.context.scene.collection.children.link(self.toolcol)
self.toolcol.hide_viewport = True # needed ?
# get/create meshplane
self.plane = bpy.data.objects.get('interpolation_plane')
if not self.plane:
self.plane = create_plane(name='interpolation_plane')
self.plane.select_set(False)
if self.plane.name not in self.toolcol.objects:
self.toolcol.objects.link(self.plane)
target_obj = self.plane
elif self.settings.method == 'GEOMETRY':
if col != context.scene.collection:
included_cols.append(col.name)
## Maybe include a plane just behind geo ? probably bad idea
elif self.settings.method == 'OBJECT':
if not self.settings.target_object:
self.exit_modal(context, status='ERROR', text='No Object selected')
return {'CANCELLED'}
col = scn.collection # Reset collection filter
target_obj = self.settings.target_object
if target_obj.library:
## Look if an override exists in scene to use instead of default object
if (override := next((o for o in scn.objects if o.name == target_obj.name and o.override_library), None)):
target_obj = override
## Prepare context manager
self.store_list = [
# (context.view_layer.objects, 'active', self.gp),
(context.tool_settings, 'use_keyframe_insert_auto', True),
# (bpy.context.scene.render, 'simplify_subdivision', 0),
]
# TODO: collection filter for GEOMETRY mode optimization
## Hide optimizations (safe for Bone Mode only, if no error)
# if self.settings.method == 'BONE':
# ## TEST: Add collections containing rig (cannot be excluded)
# # rig_parent_cols = [c.name for c in scn.collection.children_recursive if self.settings.target_rig.name in c.all_objects]
# # included_cols += rig_parent_cols
# for vlc in context.view_layer.layer_collection.children:
# self.store_list.append(
# # (vlc, 'exclude', vlc.name not in included_cols), # If excluded rig does not update !
# (vlc, 'hide_viewport', vlc.name not in included_cols), # viewport viz
# )
# print(f'Preparation {time()-start:.4f}s')
## Set everything in SETUP list
self.apply_and_store()
if self.settings.method == 'BONE':
## replace plane
_bone_plane = plane_on_bone(self.settings.target_rig.pose.bones.get(self.settings.target_bone),
arm=self.settings.target_rig,
set_rotation=self.settings.use_bone_rotation,
mesh=True)
## Set collection visibility
intercol = bpy.data.collections.get('interpolation_tool')
vl_col = bpy.context.view_layer.layer_collection.children.get(intercol.name)
intercol.hide_viewport = vl_col.exclude = vl_col.hide_viewport = False
# Override collection
col = intercol
if self.settings.method == 'TRI':
point_dict = context.window_manager.get(f'tri_{self.gp.name}')
## point_dict -> {'0': {'object': object_name_as_str, 'index': 450}, ...}
## Get triangle dumped in context.window_manager
self.object_hit_source = object_hit = [bpy.context.scene.objects.get(point_dict[str(i)]['object']) for i in range(3)]
self.tri_indices_source = tri_indices = [point_dict[str(i)]['index'] for i in range(3)] # List of vertices index corresponding to tri coordinates
tri = []
dg = bpy.context.evaluated_depsgraph_get()
for source_obj, idx in zip(object_hit, tri_indices):
ob_eval = source_obj.evaluated_get(dg)
tri.append(ob_eval.matrix_world @ ob_eval.data.vertices[idx].co)
dg = bpy.context.evaluated_depsgraph_get()
self.strokes_data = []
for si, stroke in enumerate(tgt_strokes):
nb_points = len(stroke.points)
local_co = np.empty(nb_points * 3, dtype='float64')
stroke.points.foreach_get('co', local_co)
# local_co_3d = local_co.reshape((nb_points, 3))
world_co_3d = matrix_transform(local_co.reshape((nb_points, 3)), matrix)
stroke_data = []
for i, point in enumerate(stroke.points):
point_co_world = world_co_3d[i]
if self.settings.method == 'TRI':
## Set hit location at same coordinate as point
# hit_location = point_co_world
## Set hit location on tri plane
hit_location = intersect_line_plane(origin, point_co_world, tri[0], triangle_normal(*tri))
# In this case object_hit is a list of object !
stroke_data.append((stroke, point_co_world, object_hit, hit_location, tri, tri_indices))
continue
if target_obj:
object_hit, hit_location, tri, tri_indices = obj_ray_cast(target_obj, Vector(point_co_world), origin, dg)
else:
# scene raycast
object_hit, hit_location, tri, tri_indices = ray_cast_point(point_co_world, origin, dg)
## Increasing search range
if not object_hit: # or object_hit not in col.all_objects[:]:
found = False
for iteration in range(1, 6):
for square_co in search_square(point_co_world, factor=self.settings.search_range * iteration):
if target_obj:
object_hit, hit_location, tri, tri_indices = obj_ray_cast(target_obj, Vector(square_co), origin, dg)
else:
# scene raycast
object_hit, hit_location, tri, tri_indices = ray_cast_point(square_co, origin, dg)
if object_hit:
## On location coplanar with face triangle
# hit_location = intersect_line_plane(origin, point_co_world, hit_location, triangle_normal(*tri))
## On view plane
view_vec = context.scene.camera.matrix_world.to_quaternion() @ Vector((0,0,1))
hit_location = intersect_line_plane(origin, point_co_world, hit_location, view_vec)
## An average of the two ?
# hit_location_1 = intersect_line_plane(origin, point_co_world, hit_location, triangle_normal(*tri))
# hit_location_2 = intersect_line_plane(origin, point_co_world, hit_location, view_vec)
# hit_location = (hit_location_1 + hit_location_2) / 2
found = True
# print(f'{si}:{i} iteration {iteration}') # Dbg
break
if found:
break
if not found:
## /!\ ERROR ! No surface found!
# For debugging, select only problematic stroke (and point)
for sid, s in enumerate(tgt_strokes):
s.select = sid == si
for ip, p in enumerate(stroke.points):
p.select = ip == i
self.exit_modal(context, status='ERROR', text=f'Stroke {si} point {i} could not find underlying geometry')
return {'CANCELLED'}
stroke_data.append((stroke, point_co_world, object_hit, hit_location, tri, tri_indices))
self.strokes_data.append(stroke_data)
if self.debug:
self.scan_time = time()-self.start
print(f'Scan time {self.scan_time:.4f}s')
# Copy stroke selection
bpy.ops.gpencil.select_linked() # Ensure whole stroke are selected before copy
bpy.ops.gpencil.copy()
# Jump frame and paste
bpy.context.window_manager.progress_begin(self.frames_to_jump[0], self.frames_to_jump[-1]) # Pgs
self.status = 'LOOP'
## -- LOOPTIMER
if event.type == 'TIMER':
if self.status == 'LOOP':
f = self.frames_to_jump[self.loop_count]
bpy.context.window_manager.progress_update(f) # Pgs
scn = bpy.context.scene
scn.frame_set(f)
origin = scn.camera.matrix_world.to_translation()
# origin = np.array(scn.camera.matrix_world.to_translation(), 'float64')
plan_co, plane_no = get_gp_draw_plane(self.gp)
bpy.ops.gpencil.paste()
if self.settings.method == 'BONE':
bone_plane = plane_on_bone(self.settings.target_rig.pose.bones.get(self.settings.target_bone),
arm=self.settings.target_rig,
set_rotation=self.settings.use_bone_rotation,
mesh=True)
dg = bpy.context.evaluated_depsgraph_get()
matrix_inv = np.array(self.gp.matrix_world.inverted(), dtype='float64')#.inverted()
new_strokes = self.gp.data.layers.active.active_frame.strokes[-len(self.strokes_data):]
if self.settings.method == 'TRI':
## All points have the same new frame triangle (tri_b)
tri_b = []
for source_obj, idx in zip(self.object_hit_source, self.tri_indices_source):
ob_eval = source_obj.evaluated_get(dg)
tri_b.append(ob_eval.matrix_world @ ob_eval.data.vertices[idx].co)
# for new_stroke, stroke_data in zip(new_strokes, self.strokes_data):
for new_stroke, stroke_data in zip(reversed(new_strokes), reversed(self.strokes_data)):
world_co_3d = []
for stroke, point_co, object_hit, hit_location, tri_a, tri_indices in stroke_data:
if not self.settings.method == 'TRI':
eval_ob = object_hit.evaluated_get(dg)
tri_b = [eval_ob.data.vertices[i].co for i in tri_indices]
tri_b = matrix_transform(tri_b, eval_ob.matrix_world)
new_loc = barycentric_transform(hit_location, *tri_a, *tri_b)
# try:
# new_loc = barycentric_transform(hit_location, *tri_a, *tri_b)
# except Exception as e:
# print(f'\nCould not apply barycentric tranform {eval_ob.name}')
# print(e)
# # bpy.context.scene.cursor.location = hit_location
# self.report({'ERROR'}, f'Stroke {si} point {i} could not find underlying geometry')
# return {'CANCELLED'}
world_co_3d.append(new_loc)
## Test with point in 3D space (Debug)
# nb_points = len(new_stroke.points)
# new_stroke.points.foreach_set('co', np.array(world_co_3d).reshape(nb_points*3))
# new_stroke.points.update()
## Reproject on plane
new_world_co_3d = [intersect_line_plane(origin, p, plan_co, plane_no) for p in world_co_3d]
new_local_co_3d = matrix_transform(new_world_co_3d, matrix_inv)
nb_points = len(new_stroke.points)
new_stroke.points.foreach_set('co', new_local_co_3d.reshape(nb_points*3))
new_stroke.points.update()
## Occlusion management
if self.settings.method == 'GEOMETRY' and self.settings.remove_occluded:
viz_list = [True]*len(world_co_3d)
for i, nco in enumerate(world_co_3d):
vec_direction = nco - origin
## Reduced distance slightly to avoid occlusion on same source...
dist = vec_direction.length - 0.001
n_hit, _hit_location, _normal, _n_face_index, n_object_hit, _matrix = scn.ray_cast(dg, origin, vec_direction, distance=dist)
# if there is a hit, it's occluded
if n_hit:
viz_list[i] = False
if all(viz_list):
# All visible, do nothing (just keep previous stroke)
continue
if any(viz_list):
# Create sub-strokes according to indices in original stroke
for sublist in index_list_from_bools(viz_list):
## Clear if only one isolated point ?
if len(sublist) == 1:
continue
ns = self.gp.data.layers.active.active_frame.strokes.new()
for elem in ('hardness', 'material_index', 'line_width'):
setattr(ns, elem, getattr(new_stroke, elem))
ns.points.add(len(sublist))
for i, point_index in enumerate(sublist):
for elem in ('uv_factor', 'uv_fill', 'uv_rotation', 'pressure', 'co', 'strength', 'vertex_color'):
setattr(ns.points[i], elem, getattr(new_stroke.points[point_index], elem))
## Delete original stroke
self.gp.data.layers.active.active_frame.strokes.remove(new_stroke)
self.loop_count += 1
if self.loop_count >= len(self.frames_to_jump):
self.exit_modal(context)
return {'FINISHED'}
bpy.ops.wm.redraw_timer(type='DRAW_WIN_SWAP', iterations=1)
# context.area.tag_redraw()
return {'RUNNING_MODAL'}
classes = (
GP_OT_interpolate_stroke,
)
def register():
for c in classes:
bpy.utils.register_class(c)
def unregister():
for c in reversed(classes):
bpy.utils.unregister_class(c)