gp_interpolate/utils.py

527 lines
18 KiB
Python
Raw Permalink Normal View History

2023-12-05 11:27:48 +01:00
import bpy
import math
2023-12-05 11:39:37 +01:00
import numpy as np
from math import tan
2023-12-05 11:27:48 +01:00
from mathutils import Vector, Matrix
from bpy_extras.object_utils import world_to_camera_view
2023-12-05 11:39:37 +01:00
from mathutils.geometry import (barycentric_transform, intersect_point_tri,
intersect_point_line, intersect_line_plane, tessellate_polygon)
## context manager to store restore
class attr_set():
'''Receive a list of tuple [(data_path, "attribute" [, wanted value)] ]
entering with-statement : Store existing values, assign wanted value (if any)
exiting with-statement: Restore values to their old values
'''
def __init__(self, attrib_list):
self.store = []
# item = (prop, attr, [new_val])
for item in attrib_list:
prop, attr = item[:2]
self.store.append( (prop, attr, getattr(prop, attr)) )
if len(item) >= 3:
setattr(prop, attr, item[2])
def __enter__(self):
return self
def __exit__(self, exc_type, exc_value, exc_traceback):
for prop, attr, old_val in self.store:
setattr(prop, attr, old_val)
2023-12-05 11:39:37 +01:00
# --- Vector
2024-07-18 18:22:40 +02:00
def triangle_normal(p1, p2, p3):
"""
Calculate the normal of a triangle given its three vertices.
Parameters:
p1, p2, p3: the 3 vertices of the triangle
Returns:
mathutils.Vector: The normalized normal vector of the triangle.
"""
## Get edge vectors
edge1 = Vector(p2) - Vector(p1)
edge2 = Vector(p3) - Vector(p1)
## Get normal (Cross product of the edge vectors)
normal = edge1.cross(edge2)
normal.normalize()
return normal
2023-12-05 11:39:37 +01:00
def plane_coords(size=1):
v = size * 0.5
2024-07-23 17:25:13 +02:00
return [Vector((-v, v, 0)), Vector((v, v, 0)), Vector((v, -v, 0)), Vector((-v, -v, 0))]
2023-12-05 11:39:37 +01:00
def matrix_transform(coords, matrix):
coords_4d = np.column_stack((coords, np.ones(len(coords), dtype='float64')))
return np.einsum('ij,aj->ai', matrix, coords_4d)[:, :-1]
def vector_normalized(vec):
return vec / np.sqrt(np.sum(vec**2))
def vector_magnitude(vec):
return np.sqrt(vec.dot(vec))
def search_square(point, factor=0.05, cam=None):
if cam is None:
cam = bpy.context.scene.camera
plane = plane_coords()
mat = cam.matrix_world.copy()
mat.translation = point
depth = vector_magnitude(point - cam.matrix_world.to_translation())
2024-07-15 15:47:24 +02:00
mat_scale = Matrix.Scale(tan(cam.data.angle * 0.5) * depth * factor, 4)
2023-12-05 11:39:37 +01:00
2024-07-23 17:25:13 +02:00
final_matrix = mat @ mat_scale
return [final_matrix @ co for co in plane]
2023-12-05 11:39:37 +01:00
2024-02-06 15:57:35 +01:00
def get_tri_from_face(hit_location, face_index, object_hit, depsgraph):
2023-12-05 11:39:37 +01:00
eval_ob = object_hit.evaluated_get(depsgraph)
face = eval_ob.data.polygons[face_index]
vertices = [eval_ob.data.vertices[i] for i in face.vertices]
2024-07-23 17:25:13 +02:00
face_co = [eval_ob.matrix_world @ v.co for v in vertices]
2023-12-05 11:39:37 +01:00
tri = None
for tri_idx in tessellate_polygon([face_co]):
tri = [face_co[i] for i in tri_idx]
tri_indices = [vertices[i].index for i in tri_idx]
if intersect_point_tri(hit_location, *tri):
break
2024-02-06 15:57:35 +01:00
return tri, tri_indices
def ray_cast_point(point, origin, depsgraph):
2024-07-18 14:40:14 +02:00
'''Return object hit by ray cast, hit location and triangle vertices coordinates and indices
point: point coordinate in world space
origin: origin of the ray in world space
depsgraph: current depsgraph (use bpy.context.evaluated_depsgraph_get())
return:
object_hit (object): Object that was hit
hit_location (Vector3, as np.array): Location Vector of the hit
tri (list(Vector)): List of Vector3 world space coordinate of hitten triangle (tesselated from face if needed)
tri_indices (list(int)): List of vertices index corresponding to tri coordinates
if nothing hit. return None, None, None, None
'''
2024-02-06 15:57:35 +01:00
ray = (point - origin)
hit, hit_location, normal, face_index, object_hit, matrix = bpy.context.scene.ray_cast(depsgraph, origin, ray)
if not hit:
return None, None, None, None
tri, tri_indices = get_tri_from_face(hit_location, face_index, object_hit, depsgraph)
return object_hit, hit_location, tri, tri_indices
2023-12-05 11:39:37 +01:00
2024-02-06 15:57:35 +01:00
def obj_ray_cast(obj, point, origin, depsgraph):
"""Wrapper for ray casting that moves the ray into object space"""
# get the ray relative to the object
matrix_inv = obj.matrix_world.inverted()
ray_origin_obj = matrix_inv @ origin # matrix_transform(origin, matrix_inv)
ray_target_obj = matrix_inv @ point # matrix_transform(point, matrix_inv)
ray_direction_obj = ray_target_obj - ray_origin_obj
# cast the ray
success, location, normal, face_index = obj.ray_cast(ray_origin_obj, ray_direction_obj, depsgraph=depsgraph)
if not success:
return None, None, None, None
# Get hit location world_space
hit_location = obj.matrix_world @ location
tri, tri_indices = get_tri_from_face(hit_location, face_index, obj, depsgraph)
return obj, hit_location, tri, tri_indices
2024-02-06 15:57:35 +01:00
2023-12-05 11:39:37 +01:00
2023-12-13 10:22:09 +01:00
def empty_at(name='Empty', pos=(0,0,0), collection=None, type='PLAIN_AXES', size=1, show_name=False):
'''
Create an empty at given Vector3 position.
Optional type (default 'PLAIN_AXES') in ,'ARROWS','SINGLE_ARROW','CIRCLE','CUBE','SPHERE','CONE','IMAGE'
default size is 1.0
'''
mire = bpy.data.objects.get(name)
if not mire:
mire = bpy.data.objects.new(name, None)
if collection is None:
collection = bpy.context.collection
if mire.name not in collection.all_objects:
collection.objects.link(mire)
mire.location = pos
mire.empty_display_type = type
mire.empty_display_size = size
mire.show_name = show_name
return mire
def plane_on_bone(bone, arm=None, cam=None, set_rotation=True, mesh=True):
'''
bone (posebone): reference pose bone
arm (optional: Armature): Armature of the pose bone (if not passed found using bone.id_data)
cam (optional: Camera) : Camera to align plane to (if not passed use scene camera)
set_rotation (bool): rotate the plane on cam view axis according to bone direction in 2d cam space
mesh (bool): create a real mesh ans return it, else return list of plane coordinate
'''
2023-12-05 11:39:37 +01:00
if cam is None:
cam = bpy.context.scene.camera
if arm is None:
arm = bone.id_data
mat = cam.matrix_world.copy()
if set_rotation:
head_world_coord = arm.matrix_world @ bone.head
mat.translation = head_world_coord
## Apply 2d bone rotation facing camera
# Get 2d camera space coords (NDC: normalized device coordinate, 0,0 is bottom-left)
head_2d, tail_2d = get_bone_head_tail_2d(bone, cam=cam)
2023-12-05 11:39:37 +01:00
vec_from_corner_2d = (tail_2d - head_2d).normalized()
up_vec_2d = Vector((0,1))
# angle = acos(up_vec_2d.dot(vec_from_corner_2d)) ## equivalent but not signed!
angle = up_vec_2d.angle_signed(vec_from_corner_2d)
## Axis camera aim (seem slightly off)
# rot_axis = Vector((0, 0, -1))
# rot_axis.rotate(cam.matrix_world)
## Axis camera origin -> pivot
rot_axis = head_world_coord - cam.matrix_world.translation
mat = rotate_matrix_around_pivot(mat, angle, head_world_coord, rot_axis)
2023-12-05 11:39:37 +01:00
else:
## Use mid bone to better follow movement
mat.translation = arm.matrix_world @ ((bone.tail + bone.head) / 2) # Mid bone
2023-12-05 11:39:37 +01:00
if mesh:
# get/create collection
col = bpy.data.collections.get('interpolation_tool')
if not col:
col = bpy.data.collections.new('interpolation_tool')
if col.name not in bpy.context.scene.collection.children:
bpy.context.scene.collection.children.link(col)
# get/create meshplane
plane = bpy.data.objects.get('interpolation_plane')
if not plane:
plane = create_plane(name='interpolation_plane')
# Display type as Wire for a discrete XP
plane.display_type = 'WIRE'
if plane.name not in col.objects:
col.objects.link(plane)
plane.matrix_world = mat
return plane
2024-02-06 17:51:55 +01:00
mat_scale = Matrix.Scale(10, 4)
plane = plane_coords()
2023-12-05 11:39:37 +01:00
return matrix_transform(plane, mat @ mat_scale)
2023-12-12 14:04:35 +01:00
def place_object_to_ref_facing_cam(obj, ref_ob, bone=None, cam=None, set_rotation=True):
'''
obj (Object): the object to place
ref_ob (Object): the reference object or armature
bone (posebone): reference pose bone
arm (optional: Armature): Armature of the pose bone (if not passed found using bone.id_data)
cam (optional: Camera) : Camera to align plane to (if not passed use scene camera)
set_rotation (bool): rotate the plane on cam view axis according to bone direction in 2d cam space
'''
if cam is None:
cam = bpy.context.scene.camera
# if ref_ob is None:
# ref_ob = bone.id_data
mat = cam.matrix_world.copy()
if set_rotation:
if bone:
head_world_coord = ref_ob.matrix_world @ bone.head
mat.translation = head_world_coord
## Apply 2d bone rotation facing camera
# Get 2d camera space coords (NDC: normalized device coordinate, 0,0 is bottom-left)
head_2d, tail_2d = get_bone_head_tail_2d(bone, cam=cam)
else:
mat.translation = ref_ob.matrix_world
# Get 2d camera space coords (NDC: normalized device coordinate, 0,0 is bottom-left)
scene = bpy.context.scene
up_vec = Vector((0,0,1))
up_vec.rotate(ref_ob.matrix_world)
tail_3d = ref_ob.matrix_world.to_translation() + up_vec
head_2d = world_to_camera_view(scene, cam, ref_ob.matrix_world.to_translation())
tail_2d = world_to_camera_view(scene, cam, tail_3d)
ratio = scene.render.resolution_y / scene.render.resolution_x
head_2d.y *= ratio
tail_2d.y *= ratio
vec_from_corner_2d = (tail_2d - head_2d).normalized()
up_vec_2d = Vector((0,1))
# angle = acos(up_vec_2d.dot(vec_from_corner_2d)) ## equivalent but not signed!
angle = up_vec_2d.angle_signed(vec_from_corner_2d)
## Axis camera aim (seem slightly off)
# rot_axis = Vector((0, 0, -1))
# rot_axis.rotate(cam.matrix_world)
## Axis camera origin -> pivot
rot_axis = head_world_coord - cam.matrix_world.translation
mat = rotate_matrix_around_pivot(mat, angle, head_world_coord, rot_axis)
else:
if bone:
## Use mid bone to better follow movement
mat.translation = ref_ob.matrix_world @ ((bone.tail + bone.head) / 2) # Mid bone
else:
mat.translation = ref_ob.matrix_world
## change/adapt scale
# mat_scale = Matrix.Scale(10, 4) # maybe move above mesh condition
# mat = mat @ mat_scale
obj.matrix_world = mat
def create_plane(name='Plane', collection=None):
'''Create a plane using pydata
collection: link in passed collection, else do not link in scene
'''
2024-02-06 17:51:55 +01:00
x = 100.0
y = 100.0
vert = [(-x, -y, 0.0), (x, -y, 0.0), (-x, y, 0.0), (x, y, 0.0)]
fac = [(0, 1, 3, 2)]
pl_data = bpy.data.meshes.new(name)
pl_data.from_pydata(vert, [], fac)
pl_obj = bpy.data.objects.new(name, pl_data)
# collection = bpy.context.collection
if collection:
collection.objects.link(pl_obj)
return pl_obj
2023-12-05 11:39:37 +01:00
def intersect_with_tesselated_plane(point, origin, face_co):
'''
face_co: World face coordinates
'''
tri = None
for tri_idx in tessellate_polygon([face_co]):
tri = [face_co[i] for i in tri_idx]
tri_indices = [i for i in tri_idx]
hit_location = intersect_line_plane(origin, point, sum((Vector(v) for v in tri), Vector()) / 3, triangle_normal(*tri))
if intersect_point_tri(hit_location, *tri):
break
return np.array(hit_location), tri, tri_indices
2023-12-05 11:27:48 +01:00
def get_bone_head_tail_2d(posebone, scene=None, cam=None) -> tuple[Vector, Vector]:
'''Get 2D vectors in camera view of bone head and tails
return tuple of 2d vectors (head_2d and tail_2d)
'''
scene = scene or bpy.context.scene
cam = cam or scene.camera
arm = posebone.id_data
# Get 3D locations of head and tail
head_3d = arm.matrix_world @ posebone.head
tail_3d = arm.matrix_world @ posebone.tail
# Convert 3D locations to 2D
head_2d = world_to_camera_view(scene, cam, head_3d)
tail_2d = world_to_camera_view(scene, cam, tail_3d)
ratio = scene.render.resolution_y / scene.render.resolution_x
head_2d.y *= ratio
tail_2d.y *= ratio
return Vector((head_2d.x, head_2d.y)), Vector((tail_2d.x, tail_2d.y))
def rotate_matrix_around_pivot(matrix, angle, pivot, axis):
'''Rotate a given matrix by a CW angle around pivot on a given axis
matrix (Matrix): the matrix to rotate
angle (Float, Radians): the angle in radians
pivot (Vector3): the pivot 3D coordinate
axis (Vector3): the vector axis of rotation
'''
# Convert angle to radians ?
# angle = math.radians(angle)
# Create a rotation matrix
rot_matrix = Matrix.Rotation(angle, 4, axis)
# Create translation matrices
translate_to_origin = Matrix.Translation(-pivot)
translate_back = Matrix.Translation(pivot)
# Combine the transformations : The order of multiplication is important
new_matrix = translate_back @ rot_matrix @ translate_to_origin @ matrix
2023-12-05 11:39:37 +01:00
return new_matrix
# --- GREASE PENCIL
def get_gp_draw_plane(obj=None):
''' return tuple with plane coordinate and normal
of the curent drawing according to geometry'''
if obj is None:
obj = bpy.context.object
settings = bpy.context.scene.tool_settings
orient = settings.gpencil_sculpt.lock_axis #'VIEW', 'AXIS_Y', 'AXIS_X', 'AXIS_Z', 'CURSOR'
loc = settings.gpencil_stroke_placement_view3d #'ORIGIN', 'CURSOR', 'SURFACE', 'STROKE'
mat = obj.matrix_world
plane_no = Vector((0.0, 0.0, 1.0))
plane_co = mat.to_translation()
# -> orientation
if orient == 'VIEW':
mat = bpy.context.scene.camera.matrix_world
# -> placement
if loc == "CURSOR":
plane_co = bpy.context.scene.cursor.location
mat = bpy.context.scene.cursor.matrix
elif orient == 'AXIS_Y':#front (X-Z)
plane_no = Vector((0,1,0))
elif orient == 'AXIS_X':#side (Y-Z)
plane_no = Vector((1,0,0))
elif orient == 'AXIS_Z':#top (X-Y)
plane_no = Vector((0,0,1))
plane_no.rotate(mat)
return plane_co, plane_no
## --- Animation
2024-07-23 17:25:13 +02:00
def following_keys(forward=True, animation=False) -> list:# -> list[int] | list | None:
'''Return a list of int or an empty list'''
direction = 1 if forward else -1
cur_frame = bpy.context.scene.frame_current
settings = bpy.context.scene.gp_interpo_settings
scn = bpy.context.scene
if forward:
limit = scn.frame_preview_end if scn.use_preview_range else scn.frame_end
else:
limit = scn.frame_preview_start if scn.use_preview_range else scn.frame_start
frames = []
if settings.mode == 'FRAME':
2024-07-23 17:25:13 +02:00
jump = settings.step * direction
if animation:
limit += direction # offset by one for limit to be in range
return list(range(cur_frame + jump , limit, jump))
else:
return [cur_frame + jump]
2024-07-23 17:25:13 +02:00
if settings.mode == 'GPKEY':
layers = bpy.context.object.data.layers
frames = [f.frame_number for l in layers for f in l.frames]
elif settings.mode == 'RIGKEY':
col = settings.target_collection
if not col:
col = bpy.context.scene.collection
objs = [o for o in col.all_objects if o.type == 'ARMATURE']
# Add camera moves detection
objs += [bpy.context.scene.camera]
for obj in objs:
print(obj.name)
if not obj.animation_data or not obj.animation_data.action:
continue
2024-07-23 17:25:13 +02:00
frames += [round(k.co.x) for fc in obj.animation_data.action.fcurves for k in fc.keyframe_points]
if not frames:
return []
# Sort frames (invert if looking backward)
2024-07-23 17:25:13 +02:00
frames = list(set(frames))
2024-01-12 15:37:14 +01:00
frames.sort(reverse=not forward)
2024-07-23 17:25:13 +02:00
if animation:
if forward:
2024-07-23 17:25:13 +02:00
frame_list = [f for f in frames if cur_frame < f <= limit]
else:
2024-07-23 17:25:13 +02:00
frame_list = [f for f in frames if limit <= f < cur_frame]
return frame_list
2024-07-23 17:25:13 +02:00
## Single frame
if forward:
2024-07-23 17:25:13 +02:00
frame_list = next(([f] for f in frames if f > cur_frame), [])
else:
2024-07-23 17:25:13 +02:00
frame_list = next(([f] for f in frames if f < cur_frame), [])
return frame_list
2023-12-12 14:04:35 +01:00
2024-02-06 15:57:35 +01:00
def index_list_from_bools(bool_list) -> list:
'''Receive a list of boolean
Return a list of sublists of indices where there is a continuity of True.
e.g., [True, True, False, True] will return [[0,1][3]]
'''
result = []
current_sublist = []
for i, value in enumerate(bool_list):
if value:
current_sublist.append(i)
elif current_sublist:
result.append(current_sublist)
current_sublist = []
if current_sublist:
result.append(current_sublist)
return result
2023-12-12 14:04:35 +01:00
## -- animation
def is_animated(obj):
2024-07-18 14:40:14 +02:00
return True
## -- regions operations
def location_to_region(worldcoords) -> Vector:
'''Get a world 3d coordinate and return 2d region coordinate
return: 2d vector in region space
'''
from bpy_extras import view3d_utils
return view3d_utils.location_3d_to_region_2d(bpy.context.region, bpy.context.space_data.region_3d, worldcoords)
def region_to_location(viewcoords, depthcoords) -> Vector:
'''Get 3d world coordinate from viewport region 2d coordianate
viewcoords (Vector2): 2d region vector coordinate
depthcoords (Vector3): 3d coordinate to define the depth
return: Vector3 of the placed location
'''
from bpy_extras import view3d_utils
return view3d_utils.region_2d_to_location_3d(bpy.context.region, bpy.context.space_data.region_3d, viewcoords, depthcoords)